Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):4025–4033. doi: 10.1093/nar/26.17.4025

The 3' untranslated region of the hsp 70 genes maintains the level of steady state mRNA in Trypanosoma brucei upon heat shock.

M G Lee 1
PMCID: PMC147808  PMID: 9705515

Abstract

An increase in the transcriptional efficiency at elevated temperatures is a characteristic of transcription of heat shock protein (hsp) coding genes in most eukaryotes analyzed to date. The regulatory mechanism for hsp 70 genes expression in Trypanosoma brucei does not follow the conventional transcriptional induction mechanism. The hsp 70 locus of T.brucei appears in a permanently activated state, and transcriptional induction of hsp 70 genes by heat shock does not occur in this organism. Therefore, the differential expression of the hsp 70 genes in trypanosomes is, to a large extent, post-transcriptionally controlled. Mechanisms of post-transcriptional control of the hsp 70 gene expression were investigated. Procyclic trypanosomes were normally maintained at approximately 25 degreesC. Incubation of procyclic trypanosomes at 41 degreesC drastically reduced the steady state mRNA levels of many protein coding genes. In contrast, the expression of the hsp 70 genes is either maintained at a high level or is up-regulated. The hsp 70 intergenic region promoter together with its 3' splice acceptor sites and the 5' untranslated region (UTR) are not sufficient to maintain or up-regulate the mRNA level of a reporter gene upon heat shock. However, addition of the 3' UTR of hsp 70 genes to a reporter gene, driven by different promoters, maintained a high level expression of the mRNA during heat shock. These results suggested that the 3' UTR of the hsp 70 genes is primarily responsible for the maintenance of mRNA level during heat shock, while mRNA containing the 3' UTR from many other genes may be rapidly degraded by heat shock induced processes.

Full Text

The Full Text of this article is available as a PDF (257.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990 Jun 29;61(7):1157–1160. doi: 10.1016/0092-8674(90)90674-4. [DOI] [PubMed] [Google Scholar]
  2. Aly R., Argaman M., Halman S., Shapira M. A regulatory role for the 5' and 3' untranslated regions in differential expression of hsp83 in Leishmania. Nucleic Acids Res. 1994 Aug 11;22(15):2922–2929. doi: 10.1093/nar/22.15.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argaman M., Aly R., Shapira M. Expression of heat shock protein 83 in Leishmania is regulated post-transcriptionally. Mol Biochem Parasitol. 1994 Mar;64(1):95–110. doi: 10.1016/0166-6851(94)90138-4. [DOI] [PubMed] [Google Scholar]
  4. Banerji S. S., Berg L., Morimoto R. I. Transcription and post-transcriptional regulation of avian HSP70 gene expression. J Biol Chem. 1986 Nov 25;261(33):15740–15745. [PubMed] [Google Scholar]
  5. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  6. Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
  7. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  8. Decker C. J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  9. Dragon E. A., Sias S. R., Kato E. A., Gabe J. D. The genome of Trypanosoma cruzi contains a constitutively expressed, tandemly arranged multicopy gene homologous to a major heat shock protein. Mol Cell Biol. 1987 Mar;7(3):1271–1275. doi: 10.1128/mcb.7.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Engman D. M., Sias S. R., Gabe J. D., Donelson J. E., Dragon E. A. Comparison of HSP70 genes from two strains of Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Dec;37(2):285–287. doi: 10.1016/0166-6851(89)90161-8. [DOI] [PubMed] [Google Scholar]
  11. Furger A., Schürch N., Kurath U., Roditi I. Elements in the 3' untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Mol Cell Biol. 1997 Aug;17(8):4372–4380. doi: 10.1128/mcb.17.8.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giambiagi-de Marval M., Gottesdiener K., Rondinelli E., Van der Ploeg L. H. Predicted amino acid sequence and genomic organization of Trypanosoma cruzi hsp 60 genes. Mol Biochem Parasitol. 1993 Mar;58(1):25–31. doi: 10.1016/0166-6851(93)90087-e. [DOI] [PubMed] [Google Scholar]
  13. Glass D. J., Polvere R. I., Van der Ploeg L. H. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. doi: 10.1128/mcb.6.12.4657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gottesdiener K., Chung H. M., Brown S. D., Lee M. G., Van der Ploeg L. H. Characterization of VSG gene expression site promoters and promoter-associated DNA rearrangement events. Mol Cell Biol. 1991 May;11(5):2467–2480. doi: 10.1128/mcb.11.5.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gottesdiener K., Garciá-Anoveros J., Lee M. G., Van der Ploeg L. H. Chromosome organization of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hehl A., Vassella E., Braun R., Roditi I. A conserved stem-loop structure in the 3' untranslated region of procyclin mRNAs regulates expression in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):370–374. doi: 10.1073/pnas.91.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hotz H. R., Lorenz P., Fischer R., Krieger S., Clayton C. Role of 3'-untranslated regions in the regulation of hexose transporter mRNAs in Trypanosoma brucei. Mol Biochem Parasitol. 1995 Dec;75(1):1–14. doi: 10.1016/0166-6851(95)02503-0. [DOI] [PubMed] [Google Scholar]
  18. Hunter K. W., Cook C. L., Hayunga E. G. Leishmanial differentiation in vitro: induction of heat shock proteins. Biochem Biophys Res Commun. 1984 Dec 14;125(2):755–760. doi: 10.1016/0006-291x(84)90603-x. [DOI] [PubMed] [Google Scholar]
  19. Häusler T., Clayton C. Post-transcriptional control of hsp70 mRNA in Trypanosoma brucei. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):57–71. doi: 10.1016/0166-6851(95)02538-3. [DOI] [PubMed] [Google Scholar]
  20. Lawrence F., Robert-Gero M. Induction of heat shock and stress proteins in promastigotes of three Leishmania species. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4414–4417. doi: 10.1073/pnas.82.13.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LeBowitz J. H., Smith H. Q., Rusche L., Beverley S. M. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 1993 Jun;7(6):996–1007. doi: 10.1101/gad.7.6.996. [DOI] [PubMed] [Google Scholar]
  22. Lee M. G. A foreign transcription unit in the inactivated VSG gene expression site of the procyclic form of Trypanosoma brucei and formation of large episomes in stably transformed trypanosomes. Mol Biochem Parasitol. 1995 Feb;69(2):223–238. doi: 10.1016/0166-6851(94)00186-q. [DOI] [PubMed] [Google Scholar]
  23. Lee M. G. An RNA polymerase II promoter in the hsp70 locus of Trypanosoma brucei. Mol Cell Biol. 1996 Mar;16(3):1220–1230. doi: 10.1128/mcb.16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee M. G., Atkinson B. L., Giannini S. H., Van der Ploeg L. H. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988 Oct 25;16(20):9567–9585. doi: 10.1093/nar/16.20.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee M. G., Bihain B. E., Russell D. G., Deckelbaum R. J., Van der Ploeg L. H. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4506–4517. doi: 10.1128/mcb.10.9.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee M. G., Chen J. F., Ho A. W., D'Alesandro P. A., Van der Ploeg L. H. A putative flagellar Ca2(+)-binding protein of the flagellum of trypanosomatid protozoan parasites. Nucleic Acids Res. 1990 Jul 25;18(14):4252–4252. doi: 10.1093/nar/18.14.4252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee M. G. Heat shock does not increase the transcriptional efficiency of the Hsp 70 genes of Trypanosoma brucei. Exp Parasitol. 1995 Dec;81(4):608–613. doi: 10.1006/expr.1995.1156. [DOI] [PubMed] [Google Scholar]
  28. Lee M. G., Polvere R. I., Van der Ploeg L. H. Evidence for segmental gene conversion between a cognate hsp 70 gene and the temperature-sensitively transcribed hsp70 genes of Trypanosoma brucei. Mol Biochem Parasitol. 1990 Jun;41(2):213–220. doi: 10.1016/0166-6851(90)90184-n. [DOI] [PubMed] [Google Scholar]
  29. Lee M. G., Russell D. G., D'Alesandro P. A., Van der Ploeg L. H. Identification of membrane-associated proteins in Trypanosoma brucei encoding an internal, EARLRAEE amino acid repeat. J Biol Chem. 1994 Mar 18;269(11):8408–8415. [PubMed] [Google Scholar]
  30. Lee M. G., Van der Ploeg L. H. Frequent independent duplicative transpositions activate a single VSG gene. Mol Cell Biol. 1987 Jan;7(1):357–364. doi: 10.1128/mcb.7.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee M. G., Van der Ploeg L. H. Transcription of the heat shock 70 locus in Trypanosoma brucei. Mol Biochem Parasitol. 1990 Jun;41(2):221–231. doi: 10.1016/0166-6851(90)90185-o. [DOI] [PubMed] [Google Scholar]
  32. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  33. Matthews K. R., Tschudi C., Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev. 1994 Feb 15;8(4):491–501. doi: 10.1101/gad.8.4.491. [DOI] [PubMed] [Google Scholar]
  34. Muhich M. L., Boothroyd J. C. Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol Cell Biol. 1988 Sep;8(9):3837–3846. doi: 10.1128/mcb.8.9.3837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murphy W. J., Watkins K. P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986 Nov 21;47(4):517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  36. Nozaki T., Cross G. A. Effects of 3' untranslated and intergenic regions on gene expression in Trypanosoma cruzi. Mol Biochem Parasitol. 1995 Dec;75(1):55–67. doi: 10.1016/0166-6851(95)02512-x. [DOI] [PubMed] [Google Scholar]
  37. Requena J. M., López M. C., Jimenez-Ruiz A., de la Torre J. C., Alonso C. A head-to-tail tandem organization of hsp70 genes in Trypanosoma cruzi. Nucleic Acids Res. 1988 Feb 25;16(4):1393–1406. doi: 10.1093/nar/16.4.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rougvie A. E., Lis J. T. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell. 1988 Sep 9;54(6):795–804. doi: 10.1016/s0092-8674(88)91087-2. [DOI] [PubMed] [Google Scholar]
  39. Rudenko G., Bishop D., Gottesdiener K., Van der Ploeg L. H. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J. 1989 Dec 20;8(13):4259–4263. doi: 10.1002/j.1460-2075.1989.tb08611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rudenko G., Le Blancq S., Smith J., Lee M. G., Rattray A., Van der Ploeg L. H. Procyclic acidic repetitive protein (PARP) genes located in an unusually small alpha-amanitin-resistant transcription unit: PARP promoter activity assayed by transient DNA transfection of Trypanosoma brucei. Mol Cell Biol. 1990 Jul;10(7):3492–3504. doi: 10.1128/mcb.10.7.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Saavedra C. A., Hammell C. M., Heath C. V., Cole C. N. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev. 1997 Nov 1;11(21):2845–2856. doi: 10.1101/gad.11.21.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shapira M., McEwen J. G., Jaffe C. L. Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J. 1988 Sep;7(9):2895–2901. doi: 10.1002/j.1460-2075.1988.tb03147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sutton R. E., Boothroyd J. C. Evidence for trans splicing in trypanosomes. Cell. 1986 Nov 21;47(4):527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Teixeira S. M., Kirchhoff L. V., Donelson J. E. Post-transcriptional elements regulating expression of mRNAs from the amastin/tuzin gene cluster of Trypanosoma cruzi. J Biol Chem. 1995 Sep 22;270(38):22586–22594. doi: 10.1074/jbc.270.38.22586. [DOI] [PubMed] [Google Scholar]
  45. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  46. Topol J., Ruden D. M., Parker C. S. Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell. 1985 Sep;42(2):527–537. doi: 10.1016/0092-8674(85)90110-2. [DOI] [PubMed] [Google Scholar]
  47. Van der Ploeg L. H., Bernards A., Rijsewijk F. A., Borst P. Characterization of the DNA duplication-transposition that controls the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Res. 1982 Jan 22;10(2):593–609. doi: 10.1093/nar/10.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van der Ploeg L. H., Giannini S. H., Cantor C. R. Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science. 1985 Jun 21;228(4706):1443–1446. doi: 10.1126/science.4012301. [DOI] [PubMed] [Google Scholar]
  49. Van der Ploeg L. H., Smith C. L., Polvere R. I., Gottesdiener K. M. Improved separation of chromosome-sized DNA from Trypanosoma brucei, stock 427-60. Nucleic Acids Res. 1989 Apr 25;17(8):3217–3227. doi: 10.1093/nar/17.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995 Jun;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull. 1985 Apr;41(2):105–114. doi: 10.1093/oxfordjournals.bmb.a072036. [DOI] [PubMed] [Google Scholar]
  52. Vickerman K., Tetley L., Hendry K. A., Turner C. M. Biology of African trypanosomes in the tsetse fly. Biol Cell. 1988;64(2):109–119. doi: 10.1016/0248-4900(88)90070-6. [DOI] [PubMed] [Google Scholar]
  53. White T. C., Rudenko G., Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986 Dec 9;14(23):9471–9489. doi: 10.1093/nar/14.23.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wu C. Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature. 1984 May 17;309(5965):229–234. doi: 10.1038/309229a0. [DOI] [PubMed] [Google Scholar]
  55. Zimarino V., Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. 1987 Jun 25-Jul 1Nature. 327(6124):727–730. doi: 10.1038/327727a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES