Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):3998–4004. doi: 10.1093/nar/26.17.3998

Reiterative dG addition by Euplotes crassus telomerase during extension of non-telomeric DNA.

J Bednenko 1, M Melek 1, D E Shippen 1
PMCID: PMC147809  PMID: 9705511

Abstract

Telomerase from the ciliate Euplotes crassus incorporates G4T4telomeric repeats onto both telomeric and non-telomeric single-stranded DNA 3'-ends via reverse transcription of a templating domain in its RNA subunit. Here we describe an unusual mode of template copying that is characteristic of DNA synthesis onto non-telomeric 3'-ends in vitro . When dTTP was eliminated from telomerase reactions, telomeric primers or DNA products generated from the telomerase endonuclease were extended by precise copying of the RNA template. In contrast, telomerase catalyzed the addition of up to 13 dG residues onto primers with non-telomeric 3'-ends under the same reaction conditions. Introducing mismatches in the 3'-terminus of telomeric primers that reduced primer complementarity to the RNA template induced reiterative dG incorporation, indicating that the reaction is influenced by Watson-Crick base pair formation between the primer and the RNA template. Unexpectedly, the reiterative dG addition mode was confined to telomerase derived from developing cells that undergo new telomere formation. This reaction was not observed in vegetatively growing cells. We postulate that indiscriminate dG addition by telomerase occurs by reiterative copying of C residues in the telomerase RNA templating domain and reflects lateral instability of the primer-template interaction during de novo telomere formation.

Full Text

The Full Text of this article is available as a PDF (314.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bebenek K., Abbotts J., Roberts J. D., Wilson S. H., Kunkel T. A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J Biol Chem. 1989 Oct 5;264(28):16948–16956. [PubMed] [Google Scholar]
  2. Bebenek K., Beard W. A., Casas-Finet J. R., Kim H. R., Darden T. A., Wilson S. H., Kunkel T. A. Reduced frameshift fidelity and processivity of HIV-1 reverse transcriptase mutants containing alanine substitutions in helix H of the thumb subdomain. J Biol Chem. 1995 Aug 18;270(33):19516–19523. doi: 10.1074/jbc.270.33.19516. [DOI] [PubMed] [Google Scholar]
  3. Bednenko J., Melek M., Greene E. C., Shippen D. E. Developmentally regulated initiation of DNA synthesis by telomerase: evidence for factor-assisted de novo telomere formation. EMBO J. 1997 May 1;16(9):2507–2518. doi: 10.1093/emboj/16.9.2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHAMBERLIN M., BERG P. MECHANISM OF RNA POLYMERASE ACTION: CHARACTERIZATION OF THE DNA-DEPENDENT SYNTHESIS OF POLYADENYLIC ACID. J Mol Biol. 1964 May;8:708–726. doi: 10.1016/s0022-2836(64)80120-0. [DOI] [PubMed] [Google Scholar]
  5. Cohn M., Blackburn E. H. Telomerase in yeast. Science. 1995 Jul 21;269(5222):396–400. doi: 10.1126/science.7618104. [DOI] [PubMed] [Google Scholar]
  6. Collins K., Greider C. W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 1993 Jul;7(7B):1364–1376. doi: 10.1101/gad.7.7b.1364. [DOI] [PubMed] [Google Scholar]
  7. Collins K., Greider C. W. Utilization of ribonucleotides and RNA primers by Tetrahymena telomerase. EMBO J. 1995 Nov 1;14(21):5422–5432. doi: 10.1002/j.1460-2075.1995.tb00226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins K., Kobayashi R., Greider C. W. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell. 1995 Jun 2;81(5):677–686. doi: 10.1016/0092-8674(95)90529-4. [DOI] [PubMed] [Google Scholar]
  9. Counter C. M., Meyerson M., Eaton E. N., Weinberg R. A. The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9202–9207. doi: 10.1073/pnas.94.17.9202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilley D., Blackburn E. H. Specific RNA residue interactions required for enzymatic functions of Tetrahymena telomerase. Mol Cell Biol. 1996 Jan;16(1):66–75. doi: 10.1128/mcb.16.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilley D., Lee M. S., Blackburn E. H. Altering specific telomerase RNA template residues affects active site function. Genes Dev. 1995 Sep 15;9(18):2214–2226. doi: 10.1101/gad.9.18.2214. [DOI] [PubMed] [Google Scholar]
  12. Greene E. C., Bednenko J., Shippen D. E. Flexible positioning of the telomerase-associated nuclease leads to preferential elimination of nontelomeric DNA. Mol Cell Biol. 1998 Mar;18(3):1544–1552. doi: 10.1128/mcb.18.3.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greider C. W., Blackburn E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989 Jan 26;337(6205):331–337. doi: 10.1038/337331a0. [DOI] [PubMed] [Google Scholar]
  14. Greider C. W., Blackburn E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987 Dec 24;51(6):887–898. doi: 10.1016/0092-8674(87)90576-9. [DOI] [PubMed] [Google Scholar]
  15. Greider C. W. Telomerase is processive. Mol Cell Biol. 1991 Sep;11(9):4572–4580. doi: 10.1128/mcb.11.9.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hammond P. W., Lively T. N., Cech T. R. The anchor site of telomerase from Euplotes aediculatus revealed by photo-cross-linking to single- and double-stranded DNA primers. Mol Cell Biol. 1997 Jan;17(1):296–308. doi: 10.1128/mcb.17.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harrington L., McPhail T., Mar V., Zhou W., Oulton R., Bass M. B., Arruda I., Robinson M. O. A mammalian telomerase-associated protein. Science. 1997 Feb 14;275(5302):973–977. doi: 10.1126/science.275.5302.973. [DOI] [PubMed] [Google Scholar]
  18. Hashim M. F., Schnetz-Boutaud N., Marnett L. J. Replication of template-primers containing propanodeoxyguanosine by DNA polymerase beta. Induction of base pair substitution and frameshift mutations by template slippage and deoxynucleoside triphosphate stabilization. J Biol Chem. 1997 Aug 8;272(32):20205–20212. doi: 10.1074/jbc.272.32.20205. [DOI] [PubMed] [Google Scholar]
  19. Hoffmann J. S., Pillaire M. J., Garcia-Estefania D., Lapalu S., Villani G. In vitro bypass replication of the cisplatin-d(GpG) lesion by calf thymus DNA polymerase beta and human immunodeficiency virus type I reverse transcriptase is highly mutagenic. J Biol Chem. 1996 Jun 28;271(26):15386–15392. doi: 10.1074/jbc.271.26.15386. [DOI] [PubMed] [Google Scholar]
  20. Jacques J. P., Hausmann S., Kolakofsky D. Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO J. 1994 Nov 15;13(22):5496–5503. doi: 10.1002/j.1460-2075.1994.tb06884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacques J. P., Kolakofsky D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991 May;5(5):707–713. doi: 10.1101/gad.5.5.707. [DOI] [PubMed] [Google Scholar]
  22. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  23. Lingner J., Hughes T. R., Shevchenko A., Mann M., Lundblad V., Cech T. R. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997 Apr 25;276(5312):561–567. doi: 10.1126/science.276.5312.561. [DOI] [PubMed] [Google Scholar]
  24. Luzzatto L., Bessler M., Rotoli B. Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise? Cell. 1997 Jan 10;88(1):1–4. doi: 10.1016/s0092-8674(00)81850-4. [DOI] [PubMed] [Google Scholar]
  25. Melek M., Greene E. C., Shippen D. E. Processing of nontelomeric 3' ends by telomerase: default template alignment and endonucleolytic cleavage. Mol Cell Biol. 1996 Jul;16(7):3437–3445. doi: 10.1128/mcb.16.7.3437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyerson M., Counter C. M., Eaton E. N., Ellisen L. W., Steiner P., Caddle S. D., Ziaugra L., Beijersbergen R. L., Davidoff M. J., Liu Q. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997 Aug 22;90(4):785–795. doi: 10.1016/s0092-8674(00)80538-3. [DOI] [PubMed] [Google Scholar]
  27. Morin G. B. Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature. 1991 Oct 3;353(6343):454–456. doi: 10.1038/353454a0. [DOI] [PubMed] [Google Scholar]
  28. Nakamura T. M., Morin G. B., Chapman K. B., Weinrich S. L., Andrews W. H., Lingner J., Harley C. B., Cech T. R. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997 Aug 15;277(5328):955–959. doi: 10.1126/science.277.5328.955. [DOI] [PubMed] [Google Scholar]
  29. Prescott D. M. The DNA of ciliated protozoa. Microbiol Rev. 1994 Jun;58(2):233–267. doi: 10.1128/mr.58.2.233-267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prescott J., Blackburn E. H. Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Genes Dev. 1997 Feb 15;11(4):528–540. doi: 10.1101/gad.11.4.528. [DOI] [PubMed] [Google Scholar]
  31. Ricchetti M., Buc H. A reiterative mode of DNA synthesis adopted by HIV-1 reverse transcriptase after a misincorporation. Biochemistry. 1996 Nov 26;35(47):14970–14983. doi: 10.1021/bi961274v. [DOI] [PubMed] [Google Scholar]
  32. Roth M., Lin M., Prescott D. M. Large scale synchronous mating and the study of macronuclear development in Euplotes crassus. J Cell Biol. 1985 Jul;101(1):79–84. doi: 10.1083/jcb.101.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schlötterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992 Jan 25;20(2):211–215. doi: 10.1093/nar/20.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shippen-Lentz D., Blackburn E. H. Functional evidence for an RNA template in telomerase. Science. 1990 Feb 2;247(4942):546–552. doi: 10.1126/science.1689074. [DOI] [PubMed] [Google Scholar]
  35. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  36. Vidal S., Curran J., Kolakofsky D. A stuttering model for paramyxovirus P mRNA editing. EMBO J. 1990 Jun;9(6):2017–2022. doi: 10.1002/j.1460-2075.1990.tb08330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang H., Blackburn E. H. De novo telomere addition by Tetrahymena telomerase in vitro. EMBO J. 1997 Feb 17;16(4):866–879. doi: 10.1093/emboj/16.4.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang H., Gilley D., Blackburn E. H. A novel specificity for the primer-template pairing requirement in Tetrahymena telomerase. EMBO J. 1998 Feb 16;17(4):1152–1160. doi: 10.1093/emboj/17.4.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yu G. L., Bradley J. D., Attardi L. D., Blackburn E. H. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature. 1990 Mar 8;344(6262):126–132. doi: 10.1038/344126a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES