Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):4068–4077. doi: 10.1093/nar/26.17.4068

The human DEVH-box protein Ski2w from the HLA is localized in nucleoli and ribosomes.

X Qu 1, Z Yang 1, S Zhang 1, L Shen 1, A W Dangel 1, J H Hughes 1, K L Redman 1, L C Wu 1, C Y Yu 1
PMCID: PMC147813  PMID: 9705521

Abstract

The human helicase gene SKI2W is located between RD and RP1 in the class III region of the major histocompatibility complex. Transcripts of SKI2W are detectable in RNA samples isolated from multiple tissues. The protein product Ski2w shares striking amino acid sequence similarities to the yeast antiviral protein Ski2p that controls the translation of mRNAs, probably based on the mRNA structural integrity. Whether this translational regulation mechanism for cellular and viral RNAs exists in mammals is under investigation. Antisera against human Ski2w were generated using fusion proteins produced in bacteria or insect cells. Western blot analysis showed that the endogenous Ski2w protein is approximately 140 kDa in size and is enriched in polysomal fractions of cytoplasmic extracts from HeLa cells. Ribosomal profile studies revealed that Ski2w distributed throughout the entire sucrose gradient in the presence of Mg2+, but co-sedimented with the 18S rRNA-containing 40S subunit and the small ribosomal subunit protein S27a in the presence of EDTA. The co-sedimentation of Ski2w with the 40S subunit is not affected by RNase A treatment of the cell extract, or the addition of KCl to 0.5 M, suggesting that Ski2w is associated with the 40S ribosomal subunit. Indirect immunofluorescence experiments showed that human Ski2w is localized in the nucleoli and in the cytoplasm. In essence, human Ski2w is present at the sites of ribosome biogenesis and protein synthesis.

Full Text

The Full Text of this article is available as a PDF (455.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertella M. R., Jones H., Thomson W., Olavesen M. G., Campbell R. D. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II beta subunit (CSNK2B). Genomics. 1996 Sep 1;36(2):240–251. doi: 10.1006/geno.1996.0459. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. S., Parker R. P. The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J. 1998 Mar 2;17(5):1497–1506. doi: 10.1093/emboj/17.5.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell R. D., Trowsdale J. Map of the human MHC. Immunol Today. 1993 Jul;14(7):349–352. doi: 10.1016/0167-5699(93)90234-C. [DOI] [PubMed] [Google Scholar]
  5. Chan P. K., Aldrich M., Busch H. Alterations in immunolocalization of the phosphoprotein B23 in HeLa cells during serum starvation. Exp Cell Res. 1985 Nov;161(1):101–110. doi: 10.1016/0014-4827(85)90494-x. [DOI] [PubMed] [Google Scholar]
  6. Corbin F., Bouillon M., Fortin A., Morin S., Rousseau F., Khandjian E. W. The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum Mol Genet. 1997 Sep;6(9):1465–1472. doi: 10.1093/hmg/6.9.1465. [DOI] [PubMed] [Google Scholar]
  7. Dangel A. W., Shen L., Mendoza A. R., Wu L. C., Yu C. Y. Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. Nucleic Acids Res. 1995 Jun 25;23(12):2120–2126. doi: 10.1093/nar/23.12.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hensold J. O., Barth-Baus D., Stratton C. A. Inducers of erythroleukemic differentiation cause messenger RNAs that lack poly(A)-binding protein to accumulate in translationally inactive, salt-labile 80 S ribosomal complexes. J Biol Chem. 1996 Sep 20;271(38):23246–23254. doi: 10.1074/jbc.271.38.23246. [DOI] [PubMed] [Google Scholar]
  9. Johnson A. W., Kolodner R. D. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol Cell Biol. 1995 May;15(5):2719–2727. doi: 10.1128/mcb.15.5.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson A. W. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol. 1997 Oct;17(10):6122–6130. doi: 10.1128/mcb.17.10.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaspar R. L., Kakegawa T., Cranston H., Morris D. R., White M. W. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J Biol Chem. 1992 Jan 5;267(1):508–514. [PubMed] [Google Scholar]
  12. Koonin E. V. Similarities in RNA helicases. Nature. 1991 Jul 25;352(6333):290–290. doi: 10.1038/352290c0. [DOI] [PubMed] [Google Scholar]
  13. Kroeger K. M., Carville K. S., Abraham L. J. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol. 1997 Apr;34(5):391–399. doi: 10.1016/s0161-5890(97)00052-7. [DOI] [PubMed] [Google Scholar]
  14. Lee S. G., Lee I., Park S. H., Kang C., Song K. Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics. 1995 Feb 10;25(3):660–666. doi: 10.1016/0888-7543(95)80008-a. [DOI] [PubMed] [Google Scholar]
  15. Liang S., Hitomi M., Hu Y. H., Liu Y., Tartakoff A. M. A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA. Mol Cell Biol. 1996 Sep;16(9):5139–5146. doi: 10.1128/mcb.16.9.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Margossian S. P., Li H., Zassenhaus H. P., Butow R. A. The DExH box protein Suv3p is a component of a yeast mitochondrial 3'-to-5' exoribonuclease that suppresses group I intron toxicity. Cell. 1996 Jan 26;84(2):199–209. doi: 10.1016/s0092-8674(00)80975-7. [DOI] [PubMed] [Google Scholar]
  17. Masison D. C., Blanc A., Ribas J. C., Carroll K., Sonenberg N., Wickner R. B. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system. Mol Cell Biol. 1995 May;15(5):2763–2771. doi: 10.1128/mcb.15.5.2763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457–466. doi: 10.1016/s0092-8674(00)80432-8. [DOI] [PubMed] [Google Scholar]
  19. Nomura N., Nagase T., Miyajima N., Sazuka T., Tanaka A., Sato S., Seki N., Kawarabayasi Y., Ishikawa K., Tabata S. Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1994;1(5):223–229. doi: 10.1093/dnares/1.5.223. [DOI] [PubMed] [Google Scholar]
  20. Ohtake Y., Wickner R. B. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol. 1995 May;15(5):2772–2781. doi: 10.1128/mcb.15.5.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Py B., Higgins C. F., Krisch H. M., Carpousis A. J. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature. 1996 May 9;381(6578):169–172. doi: 10.1038/381169a0. [DOI] [PubMed] [Google Scholar]
  22. Redman K. L., Rechsteiner M. Extended reading frame of a ubiquitin gene encodes a stable, conserved, basic protein. J Biol Chem. 1988 Apr 5;263(10):4926–4931. [PubMed] [Google Scholar]
  23. Sachs A. B., Sarnow P., Hentze M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997 Jun 13;89(6):831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
  24. Tamanini F., Meijer N., Verheij C., Willems P. J., Galjaard H., Oostra B. A., Hoogeveen A. T. FMRP is associated to the ribosomes via RNA. Hum Mol Genet. 1996 Jun;5(6):809–813. doi: 10.1093/hmg/5.6.809. [DOI] [PubMed] [Google Scholar]
  25. Valdez B. C., Perlaky L., Henning D., Saijo Y., Chan P. K., Busch H. Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem. 1994 Sep 23;269(38):23776–23783. [PubMed] [Google Scholar]
  26. Wickner R. B. Prions and RNA viruses of Saccharomyces cerevisiae. Annu Rev Genet. 1996;30:109–139. doi: 10.1146/annurev.genet.30.1.109. [DOI] [PubMed] [Google Scholar]
  27. Widner W. R., Wickner R. B. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol Cell Biol. 1993 Jul;13(7):4331–4341. doi: 10.1128/mcb.13.7.4331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ziemiecki A., Müller R. G., Fu X. C., Hynes N. E., Kozma S. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a. EMBO J. 1990 Jan;9(1):191–196. doi: 10.1002/j.1460-2075.1990.tb08095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de la Cruz J., Kressler D., Tollervey D., Linder P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J. 1998 Feb 16;17(4):1128–1140. doi: 10.1093/emboj/17.4.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES