Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 1;26(17):3971–3976. doi: 10.1093/nar/26.17.3971

HRAD1 and MRAD1 encode mammalian homologues of the fission yeast rad1(+) cell cycle checkpoint control gene.

C M Udell 1, S K Lee 1, S Davey 1
PMCID: PMC147814  PMID: 9705507

Abstract

Eukaryotic cells arrest at the G2checkpoint in the presence of DNA damage or incompletely replicated DNA. This cell cycle checkpoint prevents the development and propagation of genomic instability. In the fission yeast, this process requires the action of a number of genes, including rad1(+) . We report here the identification of human and mouse cDNAs that exhibit extensive sequence homology to rad1(+) . The human gene, called HRAD1 , encodes a 282 amino acid protein that is 27% identical and 53% similar to yeast Rad1p. The human homologue maintains its sequence similarity over the full length of the protein, including the three proposed 3'-->5' exonuclease domains, and the leucine rich repeat region. The mouse gene, called MRAD1 , encodes a 280 amino acid protein that is 90% identical and 96% similar to HRAD1 at the amino acid level. Expression of HRAD1 in yeast rad1 mutants partially restores radiation resistance and G2checkpoint proficiency to these mutants. Evolutionaryconservation of structure between HRAD1 , MRAD1 , rad1(+), Saccharomyces cerevisiae RAD17 and the Ustilago maydis REC1 checkpoint genes suggests that the function of the encoded proteins is conserved as well. The ability of HRAD1 to partially complement yeast rad1 mutants suggests that this gene is required for G2checkpoint control in human cells.

Full Text

The Full Text of this article is available as a PDF (250.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley N. J., Holtzman D. A., Flaggs G., Keegan K. S., DeMaggio A., Ford J. C., Hoekstra M., Carr A. M. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996 Dec 2;15(23):6641–6651. [PMC free article] [PubMed] [Google Scholar]
  2. Brugarolas J., Jacks T. Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair. Nat Med. 1997 Jul;3(7):721–722. doi: 10.1038/nm0797-721. [DOI] [PubMed] [Google Scholar]
  3. Cheong N., Wang Y., Jackson M., Iliakis G. Radiation-sensitive irs mutants rejoin DNA double-strand breaks with efficiency similar to that of parental V79 cells but show altered response to radiation-induced G2 delay. Mutat Res. 1992 Aug;274(2):111–122. doi: 10.1016/0921-8777(92)90058-b. [DOI] [PubMed] [Google Scholar]
  4. Cimprich K. A., Shin T. B., Keith C. T., Schreiber S. L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2850–2855. doi: 10.1073/pnas.93.7.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davey S., Beach D. RACH2, a novel human gene that complements a fission yeast cell cycle checkpoint mutation. Mol Biol Cell. 1995 Oct;6(10):1411–1421. doi: 10.1091/mbc.6.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davey S., Han C. S., Ramer S. A., Klassen J. C., Jacobson A., Eisenberger A., Hopkins K. M., Lieberman H. B., Freyer G. A. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol Cell Biol. 1998 May;18(5):2721–2728. doi: 10.1128/mcb.18.5.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dulić V., Kaufmann W. K., Wilson S. J., Tlsty T. D., Lees E., Harper J. W., Elledge S. J., Reed S. I. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994 Mar 25;76(6):1013–1023. doi: 10.1016/0092-8674(94)90379-4. [DOI] [PubMed] [Google Scholar]
  8. Elledge S. J. Cell cycle checkpoints: preventing an identity crisis. Science. 1996 Dec 6;274(5293):1664–1672. doi: 10.1126/science.274.5293.1664. [DOI] [PubMed] [Google Scholar]
  9. Ellis N. A., Groden J., Ye T. Z., Straughen J., Lennon D. J., Ciocci S., Proytcheva M., German J. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell. 1995 Nov 17;83(4):655–666. doi: 10.1016/0092-8674(95)90105-1. [DOI] [PubMed] [Google Scholar]
  10. Enoch T., Carr A. M., Nurse P. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 1992 Nov;6(11):2035–2046. doi: 10.1101/gad.6.11.2035. [DOI] [PubMed] [Google Scholar]
  11. Funk W. D., Pak D. T., Karas R. H., Wright W. E., Shay J. W. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol. 1992 Jun;12(6):2866–2871. doi: 10.1128/mcb.12.6.2866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. German J. Bloom's syndrome. Dermatol Clin. 1995 Jan;13(1):7–18. [PubMed] [Google Scholar]
  13. Imray F. P., Kidson C. Perturbations of cell-cycle progression in gamma-irradiated ataxia telangiectasia and Huntington's disease cells detected by DNA flow cytometric analysis. Mutat Res. 1983 Dec;112(6):369–382. doi: 10.1016/0167-8817(83)90030-5. [DOI] [PubMed] [Google Scholar]
  14. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  15. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  16. Kato R., Ogawa H. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 1994 Aug 11;22(15):3104–3112. doi: 10.1093/nar/22.15.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaufmann W. K., Schwartz J. L., Hurt J. C., Byrd L. L., Galloway D. A., Levedakou E., Paules R. S. Inactivation of G2 checkpoint function and chromosomal destabilization are linked in human fibroblasts expressing human papillomavirus type 16 E6. Cell Growth Differ. 1997 Oct;8(10):1105–1114. [PubMed] [Google Scholar]
  18. Keegan K. S., Holtzman D. A., Plug A. W., Christenson E. R., Brainerd E. E., Flaggs G., Bentley N. J., Taylor E. M., Meyn M. S., Moss S. B. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 1996 Oct 1;10(19):2423–2437. doi: 10.1101/gad.10.19.2423. [DOI] [PubMed] [Google Scholar]
  19. Knox S. J., Sutherland W., Goris M. L. Correlation of tumor sensitivity to low-dose-rate irradiation with G2/M-phase block and other radiobiological parameters. Radiat Res. 1993 Jul;135(1):24–31. [PubMed] [Google Scholar]
  20. Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lieberman H. B., Hopkins K. M., Nass M., Demetrick D., Davey S. A human homolog of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13890–13895. doi: 10.1073/pnas.93.24.13890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  23. Lydall D., Weinert T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995 Dec 1;270(5241):1488–1491. doi: 10.1126/science.270.5241.1488. [DOI] [PubMed] [Google Scholar]
  24. Malkin D., Li F. P., Strong L. C., Fraumeni J. F., Jr, Nelson C. E., Kim D. H., Kassel J., Gryka M. A., Bischoff F. Z., Tainsky M. A. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990 Nov 30;250(4985):1233–1238. doi: 10.1126/science.1978757. [DOI] [PubMed] [Google Scholar]
  25. McKenna W. G., Iliakis G., Weiss M. C., Bernhard E. J., Muschel R. J. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res. 1991 Mar;125(3):283–287. [PubMed] [Google Scholar]
  26. McLeod M., Stein M., Beach D. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 1987 Mar;6(3):729–736. doi: 10.1002/j.1460-2075.1987.tb04814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagasawa H., Keng P., Harley R., Dahlberg W., Little J. B. Relationship between gamma-ray-induced G2/M delay and cellular radiosensitivity. Int J Radiat Biol. 1994 Oct;66(4):373–379. doi: 10.1080/09553009414551311. [DOI] [PubMed] [Google Scholar]
  28. Nelson W. G., Kastan M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994 Mar;14(3):1815–1823. doi: 10.1128/mcb.14.3.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  30. O'Connor P. M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K. W. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res. 1993 Oct 15;53(20):4776–4780. [PubMed] [Google Scholar]
  31. O'Rourke R. W., Miller C. W., Kato G. J., Simon K. J., Chen D. L., Dang C. V., Koeffler H. P. A potential transcriptional activation element in the p53 protein. Oncogene. 1990 Dec;5(12):1829–1832. [PubMed] [Google Scholar]
  32. Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990 Nov 25;18(22):6485–6489. doi: 10.1093/nar/18.22.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Onel K., Koff A., Bennett R. L., Unrau P., Holloman W. K. The REC1 gene of Ustilago maydis, which encodes a 3'-->5' exonuclease, couples DNA repair and completion of DNA synthesis to a mitotic checkpoint. Genetics. 1996 May;143(1):165–174. doi: 10.1093/genetics/143.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Painter R. B., Young B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7315–7317. doi: 10.1073/pnas.77.12.7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Raycroft L., Schmidt J. R., Yoas K., Hao M. M., Lozano G. Analysis of p53 mutants for transcriptional activity. Mol Cell Biol. 1991 Dec;11(12):6067–6074. doi: 10.1128/mcb.11.12.6067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rowley R., Subramani S., Young P. G. Checkpoint controls in Schizosaccharomyces pombe: rad1. EMBO J. 1992 Apr;11(4):1335–1342. doi: 10.1002/j.1460-2075.1992.tb05178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Russell K. J., Wiens L. W., Demers G. W., Galloway D. A., Plon S. E., Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res. 1995 Apr 15;55(8):1639–1642. [PubMed] [Google Scholar]
  38. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  39. Savitsky K., Sfez S., Tagle D. A., Ziv Y., Sartiel A., Collins F. S., Shiloh Y., Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet. 1995 Nov;4(11):2025–2032. doi: 10.1093/hmg/4.11.2025. [DOI] [PubMed] [Google Scholar]
  40. Scully R., Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T., Livingston D. M. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997 Jan 24;88(2):265–275. doi: 10.1016/s0092-8674(00)81847-4. [DOI] [PubMed] [Google Scholar]
  41. Siede W., Nusspaumer G., Portillo V., Rodriguez R., Friedberg E. C. Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 1996 May 1;24(9):1669–1675. doi: 10.1093/nar/24.9.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Soares M. B., Bonaldo M. F., Jelene P., Su L., Lawton L., Efstratiadis A. Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9228–9232. doi: 10.1073/pnas.91.20.9228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Srivastava S., Zou Z. Q., Pirollo K., Blattner W., Chang E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990 Dec 20;348(6303):747–749. doi: 10.1038/348747a0. [DOI] [PubMed] [Google Scholar]
  44. Su L. N., Little J. B. Prolonged cell cycle delay in radioresistant human cell lines transfected with activated ras oncogene and/or simian virus 40 T-antigen. Radiat Res. 1993 Jan;133(1):73–79. [PubMed] [Google Scholar]
  45. Swift M., Morrell D., Massey R. B., Chase C. L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991 Dec 26;325(26):1831–1836. doi: 10.1056/NEJM199112263252602. [DOI] [PubMed] [Google Scholar]
  46. Swift M., Reitnauer P. J., Morrell D., Chase C. L. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987 May 21;316(21):1289–1294. doi: 10.1056/NEJM198705213162101. [DOI] [PubMed] [Google Scholar]
  47. Taylor A. M., Harnden D. G., Arlett C. F., Harcourt S. A., Lehmann A. R., Stevens S., Bridges B. A. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975 Dec 4;258(5534):427–429. doi: 10.1038/258427a0. [DOI] [PubMed] [Google Scholar]
  48. Thelen M. P., Onel K., Holloman W. K. The REC1 gene of Ustilago maydis involved in the cellular response to DNA damage encodes an exonuclease. J Biol Chem. 1994 Jan 7;269(1):747–754. [PubMed] [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tlsty T. D., Briot A., Gualberto A., Hall I., Hess S., Hixon M., Kuppuswamy D., Romanov S., Sage M., White A. Genomic instability and cancer. Mutat Res. 1995 Jul;337(1):1–7. doi: 10.1016/0921-8777(95)00016-d. [DOI] [PubMed] [Google Scholar]
  51. Weinert T. A., Hartwell L. H. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell Biol. 1990 Dec;10(12):6554–6564. doi: 10.1128/mcb.10.12.6554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yao S. L., Akhtar A. J., McKenna K. A., Bedi G. C., Sidransky D., Mabry M., Ravi R., Collector M. I., Jones R. J., Sharkis S. J. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med. 1996 Oct;2(10):1140–1143. doi: 10.1038/nm1096-1140. [DOI] [PubMed] [Google Scholar]
  53. Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C., Wahl G. M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 1992 Sep 18;70(6):937–948. doi: 10.1016/0092-8674(92)90244-7. [DOI] [PubMed] [Google Scholar]
  54. al-Khodairy F., Carr A. M. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1343–1350. doi: 10.1002/j.1460-2075.1992.tb05179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. al-Khodairy F., Fotou E., Sheldrick K. S., Griffiths D. J., Lehmann A. R., Carr A. M. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell. 1994 Feb;5(2):147–160. doi: 10.1091/mbc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES