Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 15;26(18):4108–4115. doi: 10.1093/nar/26.18.4108

Specific binding of Drosophila nuclear protein PEP (protein on ecdysone puffs) to hsp70 DNA and RNA.

S Hamann 1, W H Strätling 1
PMCID: PMC147826  PMID: 9722628

Abstract

The Drosophila protein PEP (protein on ecdysone puffs), a component hnRNP complexes, was previously immunocytologically localized on Drosophila giant chromosomes to puffs induced by ecdysone and to some heat shock-induced puffs (e.g. at the hsp70 locus at 87A7). Here, PEP was purified to homogeneity and characterized in its DNA and RNA binding features with specific reference to the hsp70 locus. In southwestern blotting assays, PEP was found to bind with high affinity to the hsp70 coding region, but not to a flanking region nor to the boundary elements scs and scs', and non-specifically to the intergenic hsp70 SAR. In UV cross-linking assays, PEP binds with even higher affinity to hsp70 transcripts, but not to transcripts of a flanking region or of a nearby gene, aurora . Finally, competition experiments indicate that PEP recognizes specific sequences within hsp70 mRNA; in these sequences two distinct motifs were found to be enriched. In summary, our results suggest the recognition of specific transcripts as a molecular basis for the association of the protein with specific hnRNP complexes.

Full Text

The Full Text of this article is available as a PDF (234.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alzhanova-Ericsson A. T., Sun X., Visa N., Kiseleva E., Wurtz T., Daneholt B. A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore. Genes Dev. 1996 Nov 15;10(22):2881–2893. doi: 10.1101/gad.10.22.2881. [DOI] [PubMed] [Google Scholar]
  2. Amero S. A., Elgin S. C., Beyer A. L. A unique zinc finger protein is associated preferentially with active ecdysone-responsive loci in Drosophila. Genes Dev. 1991 Feb;5(2):188–200. doi: 10.1101/gad.5.2.188. [DOI] [PubMed] [Google Scholar]
  3. Amero S. A., Matunis M. J., Matunis E. L., Hockensmith J. W., Raychaudhuri G., Beyer A. L. A unique ribonucleoprotein complex assembles preferentially on ecdysone-responsive sites in Drosophila melanogaster. Mol Cell Biol. 1993 Sep;13(9):5323–5330. doi: 10.1128/mcb.13.9.5323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arranz V., Harper F., Florentin Y., Puvion E., Kress M., Ernoult-Lange M. Human and mouse MOK2 proteins are associated with nuclear ribonucleoprotein components and bind specifically to RNA and DNA through their zinc finger domains. Mol Cell Biol. 1997 Apr;17(4):2116–2126. doi: 10.1128/mcb.17.4.2116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bashaw G. J., Baker B. S. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell. 1997 May 30;89(5):789–798. doi: 10.1016/s0092-8674(00)80262-7. [DOI] [PubMed] [Google Scholar]
  6. Beckendorf S. K., Kafatos F. C. Differentiation in the salivary glands of Drosophila melanogaster: characterization of the glue proteins and their developmental appearance. Cell. 1976 Nov;9(3):365–373. doi: 10.1016/0092-8674(76)90081-7. [DOI] [PubMed] [Google Scholar]
  7. Burd C. G., Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 1994 Mar 1;13(5):1197–1204. doi: 10.1002/j.1460-2075.1994.tb06369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Choi Y. D., Grabowski P. J., Sharp P. A., Dreyfuss G. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science. 1986 Mar 28;231(4745):1534–1539. doi: 10.1126/science.3952495. [DOI] [PubMed] [Google Scholar]
  9. Corden J. L., Patturajan M. A CTD function linking transcription to splicing. Trends Biochem Sci. 1997 Nov;22(11):413–416. doi: 10.1016/s0968-0004(97)01125-0. [DOI] [PubMed] [Google Scholar]
  10. Datar K. V., Dreyfuss G., Swanson M. S. The human hnRNP M proteins: identification of a methionine/arginine-rich repeat motif in ribonucleoproteins. Nucleic Acids Res. 1993 Feb 11;21(3):439–446. doi: 10.1093/nar/21.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dietz A., Kay V., Schlake T., Landsmann J., Bode J. A plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucleic Acids Res. 1994 Jul 25;22(14):2744–2751. doi: 10.1093/nar/22.14.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Driever W., Nüsslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature. 1989 Jan 12;337(6203):138–143. doi: 10.1038/337138a0. [DOI] [PubMed] [Google Scholar]
  13. Dubnau J., Struhl G. RNA recognition and translational regulation by a homeodomain protein. Nature. 1996 Feb 22;379(6567):694–699. doi: 10.1038/379694a0. [DOI] [PubMed] [Google Scholar]
  14. Echalier G., Ohanessian A. In vitro culture of Drosophila melanogaster embryonic cells. In Vitro. 1970 Nov-Dec;6(3):162–172. doi: 10.1007/BF02617759. [DOI] [PubMed] [Google Scholar]
  15. Economidis I. V., Pederson T. In vitro assembly of a pre-messenger ribonucleoprotein. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4296–4300. doi: 10.1073/pnas.80.14.4296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
  17. Farkas G., Udvardy A. Sequence of scs and scs' Drosophila DNA fragments with boundary function in the control of gene expression. Nucleic Acids Res. 1992 May 25;20(10):2604–2604. doi: 10.1093/nar/20.10.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gamberi C., Izaurralde E., Beisel C., Mattaj I. W. Interaction between the human nuclear cap-binding protein complex and hnRNP F. Mol Cell Biol. 1997 May;17(5):2587–2597. doi: 10.1128/mcb.17.5.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gattoni R., Mahé D., Mähl P., Fischer N., Mattei M. G., Stévenin J., Fuchs J. P. The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Res. 1996 Jul 1;24(13):2535–2542. doi: 10.1093/nar/24.13.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Glover D. M., Leibowitz M. H., McLean D. A., Parry H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell. 1995 Apr 7;81(1):95–105. doi: 10.1016/0092-8674(95)90374-7. [DOI] [PubMed] [Google Scholar]
  21. Goldschmidt-Clermont M. Two genes for the major heat-shock protein of Drosophila melanogaster arranged as an inverted repeat. Nucleic Acids Res. 1980 Jan 25;8(2):235–252. doi: 10.1093/nar/8.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greisman H. A., Pabo C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 1997 Jan 31;275(5300):657–661. doi: 10.1126/science.275.5300.657. [DOI] [PubMed] [Google Scholar]
  23. Hammond L. E., Rudner D. Z., Kanaar R., Rio D. C. Mutations in the hrp48 gene, which encodes a Drosophila heterogeneous nuclear ribonucleoprotein particle protein, cause lethality and developmental defects and affect P-element third-intron splicing in vivo. Mol Cell Biol. 1997 Dec;17(12):7260–7267. doi: 10.1128/mcb.17.12.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ishikawa F., Matunis M. J., Dreyfuss G., Cech T. R. Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol. 1993 Jul;13(7):4301–4310. doi: 10.1128/mcb.13.7.4301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones R. E., Okamura C. S., Martin T. E. Immunofluorescent localization of the proteins of nuclear ribonucleoprotein complexes. J Cell Biol. 1980 Jul;86(1):235–243. doi: 10.1083/jcb.86.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kelley R. L., Wang J., Bell L., Kuroda M. I. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature. 1997 May 8;387(6629):195–199. doi: 10.1038/387195a0. [DOI] [PubMed] [Google Scholar]
  27. Kiledjian M., DeMaria C. T., Brewer G., Novick K. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the alpha-globin mRNA stability complex. Mol Cell Biol. 1997 Aug;17(8):4870–4876. doi: 10.1128/mcb.17.8.4870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kiledjian M., Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 1992 Jul;11(7):2655–2664. doi: 10.1002/j.1460-2075.1992.tb05331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marzluff W. F., Jr, Murphy E. C., Jr, Huang R. C. Transcription of ribonucleic acid in isolated mouse myeloma nuclei. Biochemistry. 1973 Aug 28;12(18):3440–3446. doi: 10.1021/bi00742a013. [DOI] [PubMed] [Google Scholar]
  30. Matunis M. J., Michael W. M., Dreyfuss G. Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleoprotein complex K protein. Mol Cell Biol. 1992 Jan;12(1):164–171. doi: 10.1128/mcb.12.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matunis M. J., Xing J., Dreyfuss G. The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization. Nucleic Acids Res. 1994 Mar 25;22(6):1059–1067. doi: 10.1093/nar/22.6.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McKnight R. A., Shamay A., Sankaran L., Wall R. J., Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Michelotti E. F., Michelotti G. A., Aronsohn A. I., Levens D. Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol. 1996 May;16(5):2350–2360. doi: 10.1128/mcb.16.5.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  35. Mougneau E., von Seggern D., Fowler T., Rosenblatt J., Jongens T., Rogers B., Gietzen D., Beckendorf S. K. A transcriptional switch between the Pig-1 and Sgs-4 genes of Drosophila melanogaster. Mol Cell Biol. 1993 Jan;13(1):184–195. doi: 10.1128/mcb.13.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Murata Y., Wharton R. P. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell. 1995 Mar 10;80(5):747–756. doi: 10.1016/0092-8674(95)90353-4. [DOI] [PubMed] [Google Scholar]
  37. Ostareck D. H., Ostareck-Lederer A., Wilm M., Thiele B. J., Mann M., Hentze M. W. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell. 1997 May 16;89(4):597–606. doi: 10.1016/s0092-8674(00)80241-x. [DOI] [PubMed] [Google Scholar]
  38. Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
  39. Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Phi-Van L., von Kries J. P., Ostertag W., Strätling W. H. The chicken lysozyme 5' matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 1990 May;10(5):2302–2307. doi: 10.1128/mcb.10.5.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Piñol-Roma S., Dreyfuss G. Cell cycle-regulated phosphorylation of the pre-mRNA-binding (heterogeneous nuclear ribonucleoprotein) C proteins. Mol Cell Biol. 1993 Sep;13(9):5762–5770. doi: 10.1128/mcb.13.9.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Piñol-Roma S., Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature. 1992 Feb 20;355(6362):730–732. doi: 10.1038/355730a0. [DOI] [PubMed] [Google Scholar]
  43. Steinmetz E. J. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell. 1997 May 16;89(4):491–494. doi: 10.1016/s0092-8674(00)80230-5. [DOI] [PubMed] [Google Scholar]
  44. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  45. Udvardy A., Maine E., Schedl P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol. 1985 Sep 20;185(2):341–358. doi: 10.1016/0022-2836(85)90408-5. [DOI] [PubMed] [Google Scholar]
  46. von Kries J. P., Buck F., Strätling W. H. Chicken MAR binding protein p120 is identical to human heterogeneous nuclear ribonucleoprotein (hnRNP) U. Nucleic Acids Res. 1994 Apr 11;22(7):1215–1220. doi: 10.1093/nar/22.7.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. von Kries J. P., Buhrmester H., Strätling W. H. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell. 1991 Jan 11;64(1):123–135. doi: 10.1016/0092-8674(91)90214-j. [DOI] [PubMed] [Google Scholar]
  48. von Kries J. P., Phi-Van L., Diekmann S., Strätling W. H. A non-curved chicken lysozyme 5' matrix attachment site is 3' followed by a strongly curved DNA sequence. Nucleic Acids Res. 1990 Jul 11;18(13):3881–3885. doi: 10.1093/nar/18.13.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES