Abstract
Sequences encoding RNase P RNAs from representatives of the last remaining classical phyla of Bacteria have been determined, completing a general phylogenetic survey of RNase P RNA sequence and structure. This broad sampling of RNase P RNAs allows some refinement of the secondary structure, and reveals patterns in the evolutionary variation of sequences and secondary structures. Although the sequences range from 100 to <25% identical to one another, and although only 40 of the nucleotides are invariant, there is considerable conservation of the underlying core of the RNA sequence. RNase P RNAs, like group I intron RNAs but unlike ribosomal RNAs, transfer RNAs or other highly conserved RNAs, are quite variable in secondary structure outside of this conserved structural core. Conservative regions of the RNA evolve by substitution of apparently interchangeable alternative structures, rather than the insertion and deletion of helical elements that occurs in the more variable regions of the RNA. In a remarkable case of convergent molecular evolution, most of the unusual structural elements of type B RNase P RNAs of the low G+C Gram-positive Bacteria have evolved independently in Thermomicrobium roseum , a member of the green non-sulfur Bacteria.
Full Text
The Full Text of this article is available as a PDF (585.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banta A. B., Haas E. S., Brown J. W., Pace N. R. Sequence of the ribonuclease P RNA gene from the cyanobacterium Anacystis nidulans. Nucleic Acids Res. 1992 Feb 25;20(4):911–911. doi: 10.1093/nar/20.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. W., Haas E. S., James B. D., Hunt D. A., Liu J. S., Pace N. R. Phylogenetic analysis and evolution of RNase P RNA in proteobacteria. J Bacteriol. 1991 Jun;173(12):3855–3863. doi: 10.1128/jb.173.12.3855-3863.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. W., Haas E. S. Ribonuclease P structure and function in Archaea. Mol Biol Rep. 1995;22(2-3):131–134. doi: 10.1007/BF00988717. [DOI] [PubMed] [Google Scholar]
- Brown J. W., Nolan J. M., Haas E. S., Rubio M. A., Major F., Pace N. R. Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3001–3006. doi: 10.1073/pnas.93.7.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. W. The ribonuclease P database. Nucleic Acids Res. 1998 Jan 1;26(1):351–352. doi: 10.1093/nar/26.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol. 1992 Aug;15(3):352–356. doi: 10.1016/S0723-2020(11)80207-9. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Chen J. L., Nolan J. M., Harris M. E., Pace N. R. Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 1998 Mar 2;17(5):1515–1525. doi: 10.1093/emboj/17.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. L., Pace N. R. Identification of the universally conserved core of ribonuclease P RNA. RNA. 1997 Jun;3(6):557–560. [PMC free article] [PubMed] [Google Scholar]
- Darr S. C., Zito K., Smith D., Pace N. R. Contributions of phylogenetically variable structural elements to the function of the ribozyme ribonuclease P. Biochemistry. 1992 Jan 21;31(2):328–333. doi: 10.1021/bi00117a003. [DOI] [PubMed] [Google Scholar]
- Deckert G., Warren P. V., Gaasterland T., Young W. G., Lenox A. L., Graham D. E., Overbeek R., Snead M. A., Keller M., Aujay M. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 1998 Mar 26;392(6674):353–358. doi: 10.1038/32831. [DOI] [PubMed] [Google Scholar]
- Gardiner K. J., Marsh T. L., Pace N. R. Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem. 1985 May 10;260(9):5415–5419. [PubMed] [Google Scholar]
- Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
- Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992 Nov 11;20(21):5785–5795. doi: 10.1093/nar/20.21.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas E. S., Armbruster D. W., Vucson B. M., Daniels C. J., Brown J. W. Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res. 1996 Apr 1;24(7):1252–1259. doi: 10.1093/nar/24.7.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas E. S., Banta A. B., Harris J. K., Pace N. R., Brown J. W. Structure and evolution of ribonuclease P RNA in Gram-positive bacteria. Nucleic Acids Res. 1996 Dec 1;24(23):4775–4782. doi: 10.1093/nar/24.23.4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas E. S., Brown J. W., Pitulle C., Pace N. R. Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2527–2531. doi: 10.1073/pnas.91.7.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas E. S., Morse D. P., Brown J. W., Schmidt F. J., Pace N. R. Long-range structure in ribonuclease P RNA. Science. 1991 Nov 8;254(5033):853–856. doi: 10.1126/science.1719634. [DOI] [PubMed] [Google Scholar]
- Harris M. E., Kazantsev A. V., Chen J. L., Pace N. R. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking. RNA. 1997 Jun;3(6):561–576. [PMC free article] [PubMed] [Google Scholar]
- Harris M. E., Nolan J. M., Malhotra A., Brown J. W., Harvey S. C., Pace N. R. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 1994 Sep 1;13(17):3953–3963. doi: 10.1002/j.1460-2075.1994.tb06711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrmann B., Winqvist O., Mattsson J. G., Kirsebom L. A. Differentiation of Chlamydia spp. by sequence determination and restriction endonuclease cleavage of RNase P RNA genes. J Clin Microbiol. 1996 Aug;34(8):1897–1902. doi: 10.1128/jcm.34.8.1897-1902.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James B. D., Olsen G. J., Liu J. S., Pace N. R. The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell. 1988 Jan 15;52(1):19–26. doi: 10.1016/0092-8674(88)90527-2. [DOI] [PubMed] [Google Scholar]
- Kirsebom L. A., Svärd S. G. Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J. 1994 Oct 17;13(20):4870–4876. doi: 10.1002/j.1460-2075.1994.tb06814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loria A., Pan T. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA. 1996 Jun;2(6):551–563. [PMC free article] [PubMed] [Google Scholar]
- Massire C., Jaeger L., Westhof E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol. 1998 Jun 19;279(4):773–793. doi: 10.1006/jmbi.1998.1797. [DOI] [PubMed] [Google Scholar]
- Massire C., Jaeger L., Westhof E. Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. RNA. 1997 Jun;3(6):553–556. [PMC free article] [PubMed] [Google Scholar]
- Massire C., Jaeger L., Westhof E. Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. RNA. 1997 Jun;3(6):553–556. [PMC free article] [PubMed] [Google Scholar]
- Morse D. P., Schmidt F. J. Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption. J Mol Biol. 1993 Mar 5;230(1):11–14. doi: 10.1006/jmbi.1993.1120. [DOI] [PubMed] [Google Scholar]
- Nolan J. M., Burke D. H., Pace N. R. Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science. 1993 Aug 6;261(5122):762–765. doi: 10.1126/science.7688143. [DOI] [PubMed] [Google Scholar]
- Pace N. R., Brown J. W. Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J Bacteriol. 1995 Apr;177(8):1919–1928. doi: 10.1128/jb.177.8.1919-1928.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascual A., Vioque A. Cloning, purification and characterization of the protein subunit of ribonuclease P from the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem. 1996 Oct 1;241(1):17–24. doi: 10.1111/j.1432-1033.1996.0017t.x. [DOI] [PubMed] [Google Scholar]
- Pascual A., Vioque A. Sequence and structure of the RNA subunit of RNase P from the cyanobacterium Pseudoanabaena sp. PCC6903. Biochim Biophys Acta. 1994 Aug 2;1218(3):463–465. doi: 10.1016/0167-4781(94)90207-0. [DOI] [PubMed] [Google Scholar]
- Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990 Oct 25;18(20):6097–6100. doi: 10.1093/nar/18.20.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serra M. J., Lyttle M. H., Axenson T. J., Schadt C. A., Turner D. H. RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res. 1993 Aug 11;21(16):3845–3849. doi: 10.1093/nar/21.16.3845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel R. W., Banta A. B., Haas E. S., Brown J. W., Pace N. R. Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA. RNA. 1996 May;2(5):452–462. [PMC free article] [PubMed] [Google Scholar]
- Smith D., Pace N. R. Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry. 1993 May 25;32(20):5273–5281. doi: 10.1021/bi00071a001. [DOI] [PubMed] [Google Scholar]
- Tallsjö A., Kufel J., Kirsebom L. A. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release. RNA. 1996 Apr;2(4):299–307. [PMC free article] [PubMed] [Google Scholar]
- Tanner M. A., Cech T. R. An important RNA tertiary interaction of group I and group II introns is implicated in gram-positive RNase P RNAs. RNA. 1995 Jun;1(4):349–350. [PMC free article] [PubMed] [Google Scholar]
- Vioque A. Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. Nucleic Acids Res. 1992 Dec 11;20(23):6331–6337. doi: 10.1093/nar/20.23.6331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vioque A. The RNase P RNA from cyanobacteria: short tandemly repeated repetitive (STRR) sequences are present within the RNase P RNA gene in heterocyst-forming cyanobacteria. Nucleic Acids Res. 1997 Sep 1;25(17):3471–3477. doi: 10.1093/nar/25.17.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh D. S., Green C. J., Pace N. R. The design and catalytic properties of a simplified ribonuclease P RNA. Science. 1989 Jun 30;244(4912):1569–1571. doi: 10.1126/science.2472671. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]