Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 15;26(18):4121–4128. doi: 10.1093/nar/26.18.4121

p59OASL, a 2'-5' oligoadenylate synthetase like protein: a novel human gene related to the 2'-5' oligoadenylate synthetase family.

R Hartmann 1, H S Olsen 1, S Widder 1, R Jorgensen 1, J Justesen 1
PMCID: PMC147837  PMID: 9722630

Abstract

The 2'-5' oligoadenylate synthetases form a well conserved family of interferon induced proteins, presumably present throughout the mammalian class. Using the Expressed Sequence Tag databases, we have identified a novel member of this family. This protein, which we named p59 2'-5' oligoadenylate synthetase-like protein (p59OASL), shares a highly conserved N-terminal domain with the known forms of 2'-5' oligoadenylate synthetases, but differs completely in its C-terminal part. The C-terminus of p59OASL is formed of two domains of ubiquitin-like sequences. Here we present the characterisation of a full-length cDNA clone, the genomic sequence and the expression pattern of this gene. We have addressed the evolution of the 2'-5' oligoadenylate synthetase gene family, in the light of both this new member and new 2'-5' oligoadenylate synthetase sequence data from other species, which have recently appeared in the databases.

Full Text

The Full Text of this article is available as a PDF (425.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Kerlavage A. R., Fleischmann R. D., Fuldner R. A., Bult C. J., Lee N. H., Kirkness E. F., Weinstock K. G., Gocayne J. D., White O. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 1995 Sep 28;377(6547 Suppl):3–174. [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Baglioni C., Minks M. A., Maroney P. A. Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A. Nature. 1978 Jun 22;273(5664):684–687. doi: 10.1038/273684a0. [DOI] [PubMed] [Google Scholar]
  4. Banerji J., Sands J., Strominger J. L., Spies T. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2374–2378. doi: 10.1073/pnas.87.6.2374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benech P., Mory Y., Revel M., Chebath J. Structure of two forms of the interferon-induced (2'-5') oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J. 1985 Sep;4(9):2249–2256. doi: 10.1002/j.1460-2075.1985.tb03922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chebath J., Benech P., Hovanessian A., Galabru J., Revel M. Four different forms of interferon-induced 2',5'-oligo(A) synthetase identified by immunoblotting in human cells. J Biol Chem. 1987 Mar 15;262(8):3852–3857. [PubMed] [Google Scholar]
  7. Chebath J., Benech P., Revel M., Vigneron M. Constitutive expression of (2'-5') oligo A synthetase confers resistance to picornavirus infection. Nature. 1987 Dec 10;330(6148):587–588. doi: 10.1038/330587a0. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Clemens M. J., Williams B. R. Inhibition of cell-free protein synthesis by pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell. 1978 Mar;13(3):565–572. doi: 10.1016/0092-8674(78)90329-x. [DOI] [PubMed] [Google Scholar]
  10. Dougherty J. P., Samanta H., Farrell P. J., Lengyel P. Interferon, double-stranded RNA, and RNA degradation. Isolation of homogeneous pppA(2'p5'A)n-1 synthetase from Ehrlich ascites tumor cells. J Biol Chem. 1980 May 10;255(9):3813–3816. [PubMed] [Google Scholar]
  11. Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427. doi: 10.1016/s0076-6879(96)66026-1. [DOI] [PubMed] [Google Scholar]
  12. Frohman M. A. On beyond classic RACE (rapid amplification of cDNA ends). PCR Methods Appl. 1994 Aug;4(1):S40–S58. doi: 10.1101/gr.4.1.s40. [DOI] [PubMed] [Google Scholar]
  13. Ghosh A., Desai S. Y., Sarkar S. N., Ramaraj P., Ghosh S. K., Bandyopadhyay S., Sen G. C. Effects of mutating specific residues present near the amino terminus of 2'-5'-oligoadenylate synthetase. J Biol Chem. 1997 Jun 13;272(24):15452–15458. doi: 10.1074/jbc.272.24.15452. [DOI] [PubMed] [Google Scholar]
  14. Ghosh A., Sarkar S. N., Guo W., Bandyopadhyay S., Sen G. C. Enzymatic activity of 2'-5'-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein. J Biol Chem. 1997 Dec 26;272(52):33220–33226. doi: 10.1074/jbc.272.52.33220. [DOI] [PubMed] [Google Scholar]
  15. Ghosh S. K., Kusari J., Bandyopadhyay S. K., Samanta H., Kumar R., Sen G. C. Cloning, sequencing, and expression of two murine 2'-5'-oligoadenylate synthetases. Structure-function relationships. J Biol Chem. 1991 Aug 15;266(23):15293–15299. [PubMed] [Google Scholar]
  16. Gunning P., Ponte P., Blau H., Kedes L. alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol Cell Biol. 1983 Nov;3(11):1985–1995. doi: 10.1128/mcb.3.11.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartmann R., Norby P. L., Martensen P. M., Jorgensen P., James M. C., Jacobsen C., Moestrup S. K., Clemens M. J., Justesen J. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers. J Biol Chem. 1998 Feb 6;273(6):3236–3246. doi: 10.1074/jbc.273.6.3236. [DOI] [PubMed] [Google Scholar]
  18. Heinemeyer T., Wingender E., Reuter I., Hermjakob H., Kel A. E., Kel O. V., Ignatieva E. V., Ananko E. A., Podkolodnaya O. A., Kolpakov F. A. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998 Jan 1;26(1):362–367. doi: 10.1093/nar/26.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
  20. Justesen J., Ferbus D., Thang M. N. 2'5' oligoadenylate synthetase, an interferon induced enzyme: direct assay methods for the products, 2'5' oligoadenylates and 2'5' co-oligonucleotides. Nucleic Acids Res. 1980 Jul 25;8(14):3073–3085. doi: 10.1093/nar/8.14.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kas K., Michiels L., Merregaert J. Genomic structure and expression of the human fau gene: encoding the ribosomal protein S30 fused to a ubiquitin-like protein. Biochem Biophys Res Commun. 1992 Sep 16;187(2):927–933. doi: 10.1016/0006-291x(92)91286-y. [DOI] [PubMed] [Google Scholar]
  22. Kerr I. M., Brown R. E., Hovanessian A. G. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature. 1977 Aug 11;268(5620):540–542. doi: 10.1038/268540a0. [DOI] [PubMed] [Google Scholar]
  23. Kisselev L. L., Justesen J., Wolfson A. D., Frolova L. Y. Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett. 1998 May 8;427(2):157–163. doi: 10.1016/s0014-5793(98)00420-7. [DOI] [PubMed] [Google Scholar]
  24. Kon N., Suhadolnik R. J. Identification of the ATP binding domain of recombinant human 40-kDa 2',5'-oligoadenylate synthetase by photoaffinity labeling with 8-azido-[alpha-32P]ATP. J Biol Chem. 1996 Aug 16;271(33):19983–19990. doi: 10.1074/jbc.271.33.19983. [DOI] [PubMed] [Google Scholar]
  25. Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2662–2666. doi: 10.1073/pnas.92.7.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kozak M. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 1997 May 1;16(9):2482–2492. doi: 10.1093/emboj/16.9.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee J. W., Choi H. S., Gyuris J., Brent R., Moore D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 1995 Feb;9(2):243–254. doi: 10.1210/mend.9.2.7776974. [DOI] [PubMed] [Google Scholar]
  28. Marié I., Hovanessian A. G. The 69-kDa 2-5A synthetase is composed of two homologous and adjacent functional domains. J Biol Chem. 1992 May 15;267(14):9933–9939. [PubMed] [Google Scholar]
  29. Marra M. A., Hillier L., Waterston R. H. Expressed sequence tags--ESTablishing bridges between genomes. Trends Genet. 1998 Jan;14(1):4–7. doi: 10.1016/S0168-9525(97)01355-3. [DOI] [PubMed] [Google Scholar]
  30. Mitra A., Higgins D. W., Langenberg W. G., Nie H., Sengupta D. N., Silverman R. H. A mammalian 2-5A system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6780–6785. doi: 10.1073/pnas.93.13.6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Narasimhan J., Potter J. L., Haas A. L. Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem. 1996 Jan 5;271(1):324–330. doi: 10.1074/jbc.271.1.324. [DOI] [PubMed] [Google Scholar]
  32. Ogawa T., Hori T., Ishida I. Virus-induced cell death in plants expressing the mammalian 2',5' oligoadenylate system. Nat Biotechnol. 1996 Nov;14(11):1566–1569. doi: 10.1038/nbt1196-1566. [DOI] [PubMed] [Google Scholar]
  33. Roberts W. K., Hovanessian A., Brown R. E., Clemens M. J., Kerr I. M. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature. 1976 Dec 2;264(5585):477–480. doi: 10.1038/264477a0. [DOI] [PubMed] [Google Scholar]
  34. Rysiecki G., Gewert D. R., Williams B. R. Constitutive expression of a 2',5'-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res. 1989 Dec;9(6):649–657. doi: 10.1089/jir.1989.9.649. [DOI] [PubMed] [Google Scholar]
  35. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  36. Saunders M. E., Gewert D. R., Tugwell M. E., McMahon M., Williams B. R. Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J. 1985 Jul;4(7):1761–1768. doi: 10.1002/j.1460-2075.1985.tb03848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Toniolo D., Persico M., Alcalay M. A "housekeeping" gene on the X chromosome encodes a protein similar to ubiquitin. Proc Natl Acad Sci U S A. 1988 Feb;85(3):851–855. doi: 10.1073/pnas.85.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wiborg O., Pedersen M. S., Wind A., Berglund L. E., Marcker K. A., Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 1985 Mar;4(3):755–759. doi: 10.1002/j.1460-2075.1985.tb03693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williams B. R., Saunders M. E., Willard H. F. Interferon-regulated human 2-5A synthetase gene maps to chromosome 12. Somat Cell Mol Genet. 1986 Jul;12(4):403–408. doi: 10.1007/BF01570735. [DOI] [PubMed] [Google Scholar]
  41. Yamagata K., Oda N., Kaisaki P. J., Menzel S., Furuta H., Vaxillaire M., Southam L., Cox R. D., Lathrop G. M., Boriraj V. V. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3) Nature. 1996 Dec 5;384(6608):455–458. doi: 10.1038/384455a0. [DOI] [PubMed] [Google Scholar]
  42. Zhou A., Paranjape J., Brown T. L., Nie H., Naik S., Dong B., Chang A., Trapp B., Fairchild R., Colmenares C. Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J. 1997 Nov 3;16(21):6355–6363. doi: 10.1093/emboj/16.21.6355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES