Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 15;26(18):4304–4305. doi: 10.1093/nar/26.18.4304

A capillary electrophoresis mobility shift assay for protein-DNA binding affinities free in solution.

G J Foulds 1, F A Etzkorn 1
PMCID: PMC147840  PMID: 9722653

Abstract

Quantitative determination of dissociation constants for DNA-protein complexes will help clarify the molecular mechanisms of transcription, replication and DNA repair. A practical capillary electrophoresis mobility shift assay (CEMSA) for protein-DNA affinities free in solution is presented. The method is fast and simple, precise and general. The speed (<2 min separations) and simplicity derive from the use of an uncoated capillary with no gel matrix. The dissociation constant for GCNK58, a DNA-binding-region construct of the yeast transcription factor GCN4, binding to the AP1 DNA site was measured ( K d = 35 +/- 4 nM) to demonstrate the utility of the method.

Full Text

The Full Text of this article is available as a PDF (35.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger C., Jelesarov I., Bosshard H. R. Coupled folding and site-specific binding of the GCN4-bZIP transcription factor to the AP-1 and ATF/CREB DNA sites studied by microcalorimetry. Biochemistry. 1996 Nov 26;35(47):14984–14991. doi: 10.1021/bi961312a. [DOI] [PubMed] [Google Scholar]
  2. Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell. 1992 Dec 24;71(7):1223–1237. doi: 10.1016/s0092-8674(05)80070-4. [DOI] [PubMed] [Google Scholar]
  3. Fried M. G., Liu G. Molecular sequestration stabilizes CAP-DNA complexes during polyacrylamide gel electrophoresis. Nucleic Acids Res. 1994 Nov 25;22(23):5054–5059. doi: 10.1093/nar/22.23.5054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garner M. M., Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul 10;9(13):3047–3060. doi: 10.1093/nar/9.13.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lane D., Prentki P., Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev. 1992 Dec;56(4):509–528. doi: 10.1128/mr.56.4.509-528.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maddox J. Towards more measurement in biology. Nature. 1994 Mar 10;368(6467):95–95. doi: 10.1038/368095a0. [DOI] [PubMed] [Google Scholar]
  8. Stebbins M. A., Hoyt A. M., Sepaniak M. J., Hurlburt B. K. Design and optimization of a capillary electrophoretic mobility shift assay involving trp repressor-DNA complexes. J Chromatogr B Biomed Appl. 1996 Aug 9;683(1):77–84. doi: 10.1016/0378-4347(96)00034-5. [DOI] [PubMed] [Google Scholar]
  9. Weiss M. A., Ellenberger T., Wobbe C. R., Lee J. P., Harrison S. C., Struhl K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature. 1990 Oct 11;347(6293):575–578. doi: 10.1038/347575a0. [DOI] [PubMed] [Google Scholar]
  10. Xian J., Harrington M. G., Davidson E. H. DNA-protein binding assays from a single sea urchin egg: a high-sensitivity capillary electrophoresis method. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):86–90. doi: 10.1073/pnas.93.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES