Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 15;26(18):4186–4195. doi: 10.1093/nar/26.18.4186

Biochemical and genetic characterization of the dominant positive element driving transcription ofthe yeast TBP-encoding gene, SPT15.

S C Schroeder 1, P A Weil 1
PMCID: PMC147844  PMID: 9722639

Abstract

We previously demonstrated that a combination of both positive and negative cis -acting upstream elements control the transcription of the gene encoding TBP ( SPT15 ) in Saccharomyces cerevisiae . One of these elements found in that study, resident between 5' flanking sequences -147 and -128 , and termed PED (for positive element distal), was found to play an essential positive role in driving transcription of the gene encoding TBP. In this report, we map at nucleotide-level resolution, the critical residues which comprise PED, purify and sequence the protein that binds to it and determine that this PED binding factor is Abf1p, an abundant yeast protein previously broadly implicated in both gene regulation and DNA replication. In the case of the TBP-encoding gene, however, Abf1p works through the PED element which is a non-consensus binding site. Based upon the work of others, the PED-variant ABF1 site would be predicted to be a very poor binding site for this factor yet Abf1p binds PED and a consensus ABF1 site with comparable affinity. These results are discussed in light of the broader context of Abf1p-mediated gene regulation.

Full Text

The Full Text of this article is available as a PDF (219.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  2. Buchman A. R., Kimmerly W. J., Rine J., Kornberg R. D. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):210–225. doi: 10.1128/mcb.8.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchman A. R., Kornberg R. D. A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors. Mol Cell Biol. 1990 Mar;10(3):887–897. doi: 10.1128/mcb.10.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chalut C., Gallois Y., Poterszman A., Moncollin V., Egly J. M. Genomic structure of the human TATA-box-binding protein (TBP). Gene. 1995 Aug 19;161(2):277–282. doi: 10.1016/0378-1119(95)00209-o. [DOI] [PubMed] [Google Scholar]
  5. Colgan J., Manley J. L. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 1992 Feb;6(2):304–315. doi: 10.1101/gad.6.2.304. [DOI] [PubMed] [Google Scholar]
  6. Comai L., Tanese N., Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell. 1992 Mar 6;68(5):965–976. doi: 10.1016/0092-8674(92)90039-f. [DOI] [PubMed] [Google Scholar]
  7. Cormack B. P., Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell. 1992 May 15;69(4):685–696. doi: 10.1016/0092-8674(92)90232-2. [DOI] [PubMed] [Google Scholar]
  8. Della Seta F., Ciafré S. A., Marck C., Santoro B., Presutti C., Sentenac A., Bozzoni I. The ABF1 factor is the transcriptional activator of the L2 ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2437–2441. doi: 10.1128/mcb.10.5.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Della Seta F., Treich I., Buhler J. M., Sentenac A. ABF1 binding sites in yeast RNA polymerase genes. J Biol Chem. 1990 Sep 5;265(25):15168–15175. [PubMed] [Google Scholar]
  10. Dorsman J. C., van Heeswijk W. C., Grivell L. A. Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation. Nucleic Acids Res. 1990 May 11;18(9):2769–2776. doi: 10.1093/nar/18.9.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foulds C. E., Hawley D. K. Analysis of the human TATA binding protein promoter and identification of an ets site critical for activity. Nucleic Acids Res. 1997 Jun 15;25(12):2485–2494. doi: 10.1093/nar/25.12.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Francesconi S. C., Eisenberg S. Purification and characterization of OBF1: a Saccharomyces cerevisiae protein that binds to autonomously replicating sequences. Mol Cell Biol. 1989 Jul;9(7):2906–2913. doi: 10.1128/mcb.9.7.2906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gailus-Durner V., Xie J., Chintamaneni C., Vershon A. K. Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol Cell Biol. 1996 Jun;16(6):2777–2786. doi: 10.1128/mcb.16.6.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goss T. A., Bard M., Jarrett H. W. High-performance affinity chromatography of DNA. J Chromatogr. 1990 Jun 1;508(2):279–287. doi: 10.1016/s0021-9673(00)91270-6. [DOI] [PubMed] [Google Scholar]
  15. Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev. 1993 Jul;7(7B):1291–1308. doi: 10.1101/gad.7.7b.1291. [DOI] [PubMed] [Google Scholar]
  16. Hoey T., Dynlacht B. D., Peterson M. G., Pugh B. F., Tjian R. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell. 1990 Jun 29;61(7):1179–1186. doi: 10.1016/0092-8674(90)90682-5. [DOI] [PubMed] [Google Scholar]
  17. Hoffmann A., Horikoshi M., Wang C. K., Schroeder S., Weil P. A., Roeder R. G. Cloning of the Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Genes Dev. 1990 Jul;4(7):1141–1148. doi: 10.1101/gad.4.7.1141. [DOI] [PubMed] [Google Scholar]
  18. Huang W., Bateman E. Cloning, expression, and characterization of the TATA-binding protein (TBP) promoter binding factor, a transcription activator of the Acanthamoeba TBP gene. J Biol Chem. 1995 Dec 1;270(48):28839–28847. doi: 10.1074/jbc.270.48.28839. [DOI] [PubMed] [Google Scholar]
  19. Jones E. W. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 1991;194:428–453. doi: 10.1016/0076-6879(91)94034-a. [DOI] [PubMed] [Google Scholar]
  20. Kang J. J., Yokoi T. J., Holland M. J. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae. J Biol Chem. 1995 Dec 1;270(48):28723–28732. doi: 10.1074/jbc.270.48.28723. [DOI] [PubMed] [Google Scholar]
  21. Lira-DeVito L. M., Burke T. W., Kadonaga J. T. Structure of the genes encoding transcription factor IIB and TATA box-binding protein from Drosophila melanogaster. Gene. 1995 Feb 14;153(2):203–207. doi: 10.1016/0378-1119(94)00764-j. [DOI] [PubMed] [Google Scholar]
  22. Liu F., Bateman E. An upstream promoter element of the Acanthamoeba castellanii TBP gene binds a DNA sequence specific transcription activating protein, TPBF. Nucleic Acids Res. 1993 Sep 11;21(18):4321–4329. doi: 10.1093/nar/21.18.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu F., Bateman E. Purification and characterization of TATA-binding protein promoter binding factor. A regulatory transcription factor of the tbp gene. J Biol Chem. 1994 Jul 15;269(28):18541–18548. [PubMed] [Google Scholar]
  24. Mager W. H., Planta R. J. Multifunctional DNA-binding proteins mediate concerted transcription activation of yeast ribosomal protein genes. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):351–355. doi: 10.1016/0167-4781(90)90193-6. [DOI] [PubMed] [Google Scholar]
  25. McCarthy J. G., Rich A. Detection of an unusual distortion in A-tract DNA using KMnO4: effect of temperature and distamycin on the altered conformation. Nucleic Acids Res. 1991 Jun 25;19(12):3421–3429. doi: 10.1093/nar/19.12.3421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Poon D., Knittle R. A., Sabelko K. A., Yamamoto T., Horikoshi M., Roeder R. G., Weil P. A. Genetic and biochemical analyses of yeast TATA-binding protein mutants. J Biol Chem. 1993 Mar 5;268(7):5005–5013. [PubMed] [Google Scholar]
  27. Poon D., Schroeder S., Wang C. K., Yamamoto T., Horikoshi M., Roeder R. G., Weil P. A. The conserved carboxy-terminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth. Mol Cell Biol. 1991 Oct;11(10):4809–4821. doi: 10.1128/mcb.11.10.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Poon D., Weil P. A. Immunopurification of yeast TATA-binding protein and associated factors. Presence of transcription factor IIIB transcriptional activity. J Biol Chem. 1993 Jul 25;268(21):15325–15328. [PubMed] [Google Scholar]
  29. Sadovsky Y., Webb P., Lopez G., Baxter J. D., Fitzpatrick P. M., Gizang-Ginsberg E., Cavailles V., Parker M. G., Kushner P. J. Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol Cell Biol. 1995 Mar;15(3):1554–1563. doi: 10.1128/mcb.15.3.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schroeder S. C., Wang C. K., Weil P. A. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein. J Biol Chem. 1994 Nov 11;269(45):28335–28346. [PubMed] [Google Scholar]
  31. Schultz M. C., Reeder R. H., Hahn S. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell. 1992 May 15;69(4):697–702. doi: 10.1016/0092-8674(92)90233-3. [DOI] [PubMed] [Google Scholar]
  32. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sumita K., Makino Y., Katoh K., Kishimoto T., Muramatsu M., Mikoshiba K., Tamura T. Structure of a mammalian TBP (TATA-binding protein) gene: isolation of the mouse TBP genome. Nucleic Acids Res. 1993 Jun 11;21(11):2769–2769. doi: 10.1093/nar/21.11.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trivedi A., Vilalta A., Gopalan S., Johnson D. L. TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. Mol Cell Biol. 1996 Dec;16(12):6909–6916. doi: 10.1128/mcb.16.12.6909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Upton T., Wiltshire S., Francesconi S., Eisenberg S. ABF1 Ser-720 is a predominant phosphorylation site for casein kinase II of Saccharomyces cerevisiae. J Biol Chem. 1995 Jul 7;270(27):16153–16159. doi: 10.1074/jbc.270.27.16153. [DOI] [PubMed] [Google Scholar]
  36. Wong J. M., Liu F., Bateman E. Isolation of genomic DNA encoding transcription factor TFIID from Acanthamoeba castellanii: characterization of the promoter. Nucleic Acids Res. 1992 Sep 25;20(18):4817–4824. doi: 10.1093/nar/20.18.4817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamashita S., Hisatake K., Kokubo T., Doi K., Roeder R. G., Horikoshi M., Nakatani Y. Transcription factor TFIIB sites important for interaction with promoter-bound TFIID. Science. 1993 Jul 23;261(5120):463–466. doi: 10.1126/science.8332911. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES