Abstract
There is increasing evidence that the technique of reinfusing an athlete's stored blood prior to competition to improve performance has been used on many occasions. Although early experimental results were controversial and the precise mechanism by which the technique improves performance is still debated, there is now strong evidence that if the blood doping produces a sufficient rise in total red cell mass there are significant improvements in physiological variables such as maximum oxygen uptake, lactate buffering and thermoregulation. These physiological changes are matched by improvements in endurance performance. These may persist in diminishing degree for several weeks, but have to be weighed against the detraining effect produced by the repeated venesection required to obtain an adequate amount of stored blood for autologous reinfusion. Experimental evidence suggests that the transient increase in blood volume and cardiac output following reinfusion is too short lived to be of any real importance and the major effect is related to the increase in total red blood cell mass and haemoglobin enabling an increased transport of oxygen and therefore a potentially greater reserve of blood which can be diverted to non-exercising tissues to improve thermoregulation. The increased red cell mass also improves lactate buffering. Although these benefits have been shown in several studies the increases in performance and measured physiological parameters do not bear a direct relationship to the changes in haematological variables. Blood doping is of considerable importance, not only as an abuse of fair competition, but also because of the light it throws on the physiological limits to endurance performance. It has reawakened controversy as to whether oxygen transport is the limiting factor in endurance.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BALKE B., GRILLO G. P., KONECCI E. B., LUFT U. C. Work capacity after blood donation. J Appl Physiol. 1954 Nov;7(3):231–238. doi: 10.1152/jappl.1954.7.3.231. [DOI] [PubMed] [Google Scholar]
- Berglund B., Birgegård G., Hemmingsson P. Serum erythropoietin in cross-country skiers. Med Sci Sports Exerc. 1988 Apr;20(2):208–209. doi: 10.1249/00005768-198820020-00017. [DOI] [PubMed] [Google Scholar]
- Berglund B. Development of techniques for the detection of blood doping in sport. Sports Med. 1988 Feb;5(2):127–135. doi: 10.2165/00007256-198805020-00004. [DOI] [PubMed] [Google Scholar]
- Berglund B., Hemmingson P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int J Sports Med. 1987 Jun;8(3):231–233. doi: 10.1055/s-2008-1025661. [DOI] [PubMed] [Google Scholar]
- Berglund B., Hemmingsson P., Birgegård G. Detection of autologous blood transfusions in cross-country skiers. Int J Sports Med. 1987 Apr;8(2):66–70. doi: 10.1055/s-2008-1025643. [DOI] [PubMed] [Google Scholar]
- Brien A. J., Simon T. L. The effects of red blood cell infusion on 10-km race time. JAMA. 1987 May 22;257(20):2761–2765. [PubMed] [Google Scholar]
- Buick F. J., Gledhill N., Froese A. B., Spriet L., Meyers E. C. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):636–642. doi: 10.1152/jappl.1980.48.4.636. [DOI] [PubMed] [Google Scholar]
- Ekblom B., Wilson G., Astrand P. O. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol. 1976 Mar;40(3):379–383. doi: 10.1152/jappl.1976.40.3.379. [DOI] [PubMed] [Google Scholar]
- Faulkner J. A., Kollias J., Favour C. B., Buskirk E. R., Balke B. Maximum aerobic capacity and running performance at altitude. J Appl Physiol. 1968 May;24(5):685–691. doi: 10.1152/jappl.1968.24.5.685. [DOI] [PubMed] [Google Scholar]
- Gledhill N. Blood doping and related issues: a brief review. Med Sci Sports Exerc. 1982;14(3):183–189. [PubMed] [Google Scholar]
- Gollnick P. D., Armstrong R. B., Saubert C. W., 4th, Piehl K., Saltin B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol. 1972 Sep;33(3):312–319. doi: 10.1152/jappl.1972.33.3.312. [DOI] [PubMed] [Google Scholar]
- Holloszy J. O., Booth F. W. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol. 1976;38:273–291. doi: 10.1146/annurev.ph.38.030176.001421. [DOI] [PubMed] [Google Scholar]
- Horstman D., Weiskopf R., Jackson R. E. Work capacity during 3-wk sojourn at 4,300 m: effects of relative polycythemia. J Appl Physiol Respir Environ Exerc Physiol. 1980 Aug;49(2):311–318. doi: 10.1152/jappl.1980.49.2.311. [DOI] [PubMed] [Google Scholar]
- Kanstrup I. L., Ekblom B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exerc. 1984 Jun;16(3):256–262. [PubMed] [Google Scholar]
- Oscai L. B., Williams B. T., Hertig B. A. Effect of exercise on blood volume. J Appl Physiol. 1968 May;24(5):622–624. doi: 10.1152/jappl.1968.24.5.622. [DOI] [PubMed] [Google Scholar]
- Robertson R. J., Gilcher R., Metz K. F., Caspersen C. J., Allison T. G., Abbott R. A., Skrinar G. S., Krause J. R., Nixon P. A. Hemoglobin concentration and aerobic work capacity in women following induced erythrocythemia. J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):568–575. doi: 10.1152/jappl.1984.57.2.568. [DOI] [PubMed] [Google Scholar]
- Robertson R. J., Gilcher R., Metz K. F., Skrinar G. S., Allison T. G., Bahnson H. T., Abbott R. A., Becker R., Falkel J. E. Effect of induced erythrocythemia on hypoxia tolerance during physical exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):490–495. doi: 10.1152/jappl.1982.53.2.490. [DOI] [PubMed] [Google Scholar]
- Sawka M. N., Dennis R. C., Gonzalez R. R., Young A. J., Muza S. R., Martin J. W., Wenger C. B., Francesconi R. P., Pandolf K. B., Valeri C. R. Influence of polycythemia on blood volume and thermoregulation during exercise-heat stress. J Appl Physiol (1985) 1987 Mar;62(3):912–918. doi: 10.1152/jappl.1987.62.3.912. [DOI] [PubMed] [Google Scholar]
- Sawka M. N., Young A. J., Muza S. R., Gonzalez R. R., Pandolf K. B. Erythrocyte reinfusion and maximal aerobic power. An examination of modifying factors. JAMA. 1987 Mar 20;257(11):1496–1499. [PubMed] [Google Scholar]
- Spriet L. L., Gledhill N., Froese A. B., Wilkes D. L. Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J Appl Physiol (1985) 1986 Nov;61(5):1942–1948. doi: 10.1152/jappl.1986.61.5.1942. [DOI] [PubMed] [Google Scholar]
- Thomson J. M., Stone J. A., Ginsburg A. D., Hamilton P. O2 transport during exercise following blood reinfusion. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1213–1219. doi: 10.1152/jappl.1982.53.5.1213. [DOI] [PubMed] [Google Scholar]
- Tucker A., Stager J. M., Cordain L. Arterial O2 saturation and maximum O2 consumption in moderate-altitude runners exposed to sea level and 3,050 m. JAMA. 1984 Nov 23;252(20):2867–2871. [PubMed] [Google Scholar]
- Williams M. H., Goodwin A. R., Perkins R., Bocrie J. Effect of blood reinjection upon endurance capacity and heart rate. Med Sci Sports. 1973 Fall;5(3):181–186. [PubMed] [Google Scholar]
- Williams M. H., Lindhjem M., Schuster R. The effect of blood infusion upon endurance capacity and ratings of perceived exertion. Med Sci Sports. 1978 Summer;10(2):113–118. [PubMed] [Google Scholar]
- Williams M. H., Wesseldine S., Somma T., Schuster R. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc. 1981;13(3):169–175. [PubMed] [Google Scholar]
