Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Dec 1;26(23):5379–5387. doi: 10.1093/nar/26.23.5379

In vitro and in vivo secondary structure probing of the thrS leader in Bacillus subtilis.

D Luo 1, C Condon 1, M Grunberg-Manago 1, H Putzer 1
PMCID: PMC148014  PMID: 9826762

Abstract

The Bacillus subtilis thrS gene is a member of the T-box gene family in Gram-positive organisms whose expression is regulated by a tRNA-mediated transcriptional antitermination mechanism involving a direct tRNA:mRNA interaction. The complex leader sequences of these genes share only short stretches of primary sequence homology, but a common secondary structure has been proposed by comparing the leaders of many genes of this family. The proposed mechanism forthe tRNA:mRNA interaction depends heavily on the secondary structure model, but is so far only supported by genetic evidence. We have studied the structure of the B.subtilis thrS leader in solution, in protection experiments using both chemical and enzymatic probes. The thrS leader structure was also probed in vivo using dimethylsulphate and the in vitro and in vivo data are in good accordance. We have organized the thrS leader into three major domains comprising six separate stem-loops. All but one of the short sequences conserved in this gene family are present in loop structures. The ACC specifier codon proposed to interact with the tRNAThrGGUisoacceptor is present in a bulge and probably exists in a stacking conformation. The proposed antiterminator structure is not visible in transcripts containing the terminator, but was probed using a transcript with the 3'-half of the terminator deleted and its folding appears consistent with the regulatory model. The leader sequences, and in particular the specifier domains, of the other genes of this family can be folded similarly to the experimentally solved thrS structure.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).


Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES