Abstract
In cats under sodium pentobarbitone anaesthesia the first dose of ergotamine (50 μg/kg) invariably caused retraction of the nictitating membrane and a rise of arterial blood pressure. However, the responses to the dose of ergotamine were strikingly reduced when the cats were previously treated with the adrenaline antagonists phenoxybenzamine (5 mg/kg) or ergotamine (50 μg/kg). Further experiments to identify receptors for ergotamine were carried out on three different isolated smooth muscle preparations: rabbit aorta, rat uterus and dog retractor penis.Receptors for adrenaline were selectively protected by high concentrations of adrenaline throughout exposure of the preparation to a blocking concentration of ergotamine or phenoxybenzamine. Protected muscles responded to ergotamine; unprotected muscles did not. Muscles where receptors for acetylcholine, histamine or 5-hydroxytryptamine were protected by high concentrations of these drugs did not respond to ergotamine. Ergometrine, which has no blocking action on adrenaline receptors, behaved in the same way as ergotamine; muscles which were protected by adrenaline against blockade by phenoxybenzamine responded to ergometrine, but unprotected muscles did not. The stimulant actions of adrenaline, ergotamine and ergometrine were also protected against the blocking action of phenoxybenzamine by treating the muscle with a high concentration of ergometrine instead of adrenaline. It is concluded that, in smooth muscle which can be excited by adrenaline, ergotamine and ergometrine act by combining with adrenaline receptors, and that ergotamine may therefore be regarded not only as an adrenaline antagonist but also as a partial agonist since it excites the same receptors.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNE R. M. Effect of epinephrine and norepinephrine on coronary circulation. Circ Res. 1958 Sep;6(5):644–655. doi: 10.1161/01.res.6.5.644. [DOI] [PubMed] [Google Scholar]
- Dale H. H. On some physiological actions of ergot. J Physiol. 1906 May 31;34(3):163–206. doi: 10.1113/jphysiol.1906.sp001148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURCHGOTT R. F., BHADRAKOM S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J Pharmacol Exp Ther. 1953 Jun;108(2):129–143. [PubMed] [Google Scholar]
- FURCHGOTT R. F. Dibenamine blockade in strips of rabbit aorta and its use in differentiating receptors. J Pharmacol Exp Ther. 1954 Jul;111(3):265–284. [PubMed] [Google Scholar]
- GADDUM J. H., HAMEED K. A. Drugs which antagonize 5-hydroxytryptamine. Br J Pharmacol Chemother. 1954 Jun;9(2):240–248. doi: 10.1111/j.1476-5381.1954.tb00848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NICKERSON M. Blockade of the actions of adrenaline and noradrenaline. Pharmacol Rev. 1959 Jun;11(2 Pt 2):443–463. [PubMed] [Google Scholar]
- SCHOFIELD B. M., WALKER J. M. Perfusion of the coronary arteries of the dog. J Physiol. 1953 Dec 29;122(3):489–497. doi: 10.1113/jphysiol.1953.sp005016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHAW E., WOOLLEY D. W. Some serotoninlike activities of lysergic acid diethylamide. Science. 1956 Jul 20;124(3212):121–122. doi: 10.1126/science.124.3212.121. [DOI] [PubMed] [Google Scholar]
- STEPHENSON R. P. A modification of receptor theory. Br J Pharmacol Chemother. 1956 Dec;11(4):379–393. doi: 10.1111/j.1476-5381.1956.tb00006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
