Abstract
To investigate Saccharomyces cerevisiae 3'-end-processing signals, a set of 1352 unique pre-mRNA 3'-end-processing sites, corresponding to 861 different genes, was identified by alignment of expressed sequence tag sequences with the complete yeast genome. Nucleotide word frequencies in the vicinity of the cleavage sites were analyzed to reveal the signal element features. In addition to previously recognized processing signals, two previously uncharacterized components of the 3'-end-processing signal sequence were discovered, specifically a predominance of U-rich sequences located on either side of the cleavage site. One of these, the downstream U-rich signal, provides a further link between the 3'-end-processing mechanisms of yeast and higher eukaryotes. Analysis of the complete set of 3'-end-processing sites by means of a discrimination function supports a 'contextual' model in which the sum total effectiveness of the signals in all four elements determines whether or not processing occurs.
Full Text
The Full Text of this article is available as a PDF (269.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Audic S., Claverie J. M. Visualizing the competitive recognition of TATA-boxes in vertebrate promoters. Trends Genet. 1998 Jan;14(1):10–11. doi: 10.1016/S0168-9525(97)01323-1. [DOI] [PubMed] [Google Scholar]
- Chanfreau G., Noble S. M., Guthrie C. Essential yeast protein with unexpected similarity to subunits of mammalian cleavage and polyadenylation specificity factor (CPSF). Science. 1996 Nov 29;274(5292):1511–1514. doi: 10.1126/science.274.5292.1511. [DOI] [PubMed] [Google Scholar]
- Colgan D. F., Manley J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 1997 Nov 1;11(21):2755–2766. doi: 10.1101/gad.11.21.2755. [DOI] [PubMed] [Google Scholar]
- DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Poirot O., Lopez F., Audic S., Claverie J. M. Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering. Genome Res. 1998 May;8(5):524–530. doi: 10.1101/gr.8.5.524. [DOI] [PubMed] [Google Scholar]
- Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
- Guo Z., Sherman F. 3'-end-forming signals of yeast mRNA. Mol Cell Biol. 1995 Nov;15(11):5983–5990. doi: 10.1128/mcb.15.11.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo Z., Sherman F. 3'-end-forming signals of yeast mRNA. Trends Biochem Sci. 1996 Dec;21(12):477–481. doi: 10.1016/s0968-0004(96)10057-8. [DOI] [PubMed] [Google Scholar]
- Guo Z., Sherman F. Signals sufficient for 3'-end formation of yeast mRNA. Mol Cell Biol. 1996 Jun;16(6):2772–2776. doi: 10.1128/mcb.16.6.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller W., Minvielle-Sebastia L. A comparison of mammalian and yeast pre-mRNA 3'-end processing. Curr Opin Cell Biol. 1997 Jun;9(3):329–336. doi: 10.1016/s0955-0674(97)80004-x. [DOI] [PubMed] [Google Scholar]
- Lashkari D. A., DeRisi J. L., McCusker J. H., Namath A. F., Gentile C., Hwang S. Y., Brown P. O., Davis R. W. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13057–13062. doi: 10.1073/pnas.94.24.13057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manley J. L., Takagaki Y. The end of the message--another link between yeast and mammals. Science. 1996 Nov 29;274(5292):1481–1482. doi: 10.1126/science.274.5292.1481. [DOI] [PubMed] [Google Scholar]
- Preker P. J., Ohnacker M., Minvielle-Sebastia L., Keller W. A multisubunit 3' end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor. EMBO J. 1997 Aug 1;16(15):4727–4737. doi: 10.1093/emboj/16.15.4727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russo P., Li W. Z., Guo Z., Sherman F. Signals that produce 3' termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1993 Dec;13(12):7836–7849. doi: 10.1128/mcb.13.12.7836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990 Oct 25;18(20):6097–6100. doi: 10.1093/nar/18.20.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stumpf G., Domdey H. Dependence of yeast pre-mRNA 3'-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Science. 1996 Nov 29;274(5292):1517–1520. doi: 10.1126/science.274.5292.1517. [DOI] [PubMed] [Google Scholar]
- Trifonov E. N. Interfering contexts of regulatory sequence elements. Comput Appl Biosci. 1996 Oct;12(5):423–429. doi: 10.1093/bioinformatics/12.5.423. [DOI] [PubMed] [Google Scholar]
- Zhao J., Kessler M. M., Moore C. L. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian Cleavage/ polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA. J Biol Chem. 1997 Apr 18;272(16):10831–10838. doi: 10.1074/jbc.272.16.10831. [DOI] [PubMed] [Google Scholar]