Abstract
Instrumentation has been developed for the rapid electronic sizing of large numbers of myofibrils. The response of myofibrils in the presence of ATP to changes in Ca++ concentration was examined. Shortening of myofibrils upon addition of Ca++ was accompanied by an increased protein effective volume of approximately 10-40%. Whereas ATPase activation and increased turbidity of myofibrils upon addition of Ca++ were reversible upon subsequent addition of EGTA, the shortening and swelling were irreversible. It is proposed that the swelling may result from the breaking of hydrophobic bonds within myosin. The ATPase activity and turbidity are measures of the input, while the shortening and swelling are measures of the output of a coupled nonequilibrium process; failure of reversal of the output indicates an uncoupling under the experimental conditions.
Full text
PDF


















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C., BASKIN R. J. Volume changes in frog muscle during contraction. J Physiol. 1962 May;161:379–391. doi: 10.1113/jphysiol.1962.sp006893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BASKIN R. J. VOLUME CHANGES IN ISOLATED MYOFIBRILS. Biochim Biophys Acta. 1964 Nov 29;88:517–527. doi: 10.1016/0926-6577(64)90095-6. [DOI] [PubMed] [Google Scholar]
- Baskin R. J., Paolini P. J. Muscle volume changes. J Gen Physiol. 1966 Jan;49(3):387–404. doi: 10.1085/jgp.49.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baskin R. J., Paolini P. J. Volume change and pressure development in muscle during contraction. Am J Physiol. 1967 Oct;213(4):1025–1030. doi: 10.1152/ajplegacy.1967.213.4.1025. [DOI] [PubMed] [Google Scholar]
- Briskey E. J., Seraydarian K., Mommaerts W. F. The modification of actomyosin by alpha-actinin. II. The effect of alpha-actinin upon contractility. Biochim Biophys Acta. 1967 Apr 11;133(3):412–423. doi: 10.1016/0005-2795(67)90545-4. [DOI] [PubMed] [Google Scholar]
- Bull B. S. On the distribution of red cell volumes. Blood. 1968 Apr;31(4):503–515. [PubMed] [Google Scholar]
- Caplan S. R. Autonomic energy conversion. I. The input relation: phenomenological and mechanistic considerations. Biophys J. 1968 Oct;8(10):1146–1166. doi: 10.1016/S0006-3495(68)86546-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott G. F., Lowy J., Millman B. M. Low-angle x-ray diffraction studies of living striated muscle during contraction. J Mol Biol. 1967 Apr 14;25(1):31–45. doi: 10.1016/0022-2836(67)90277-x. [DOI] [PubMed] [Google Scholar]
- Evans T. C., Jr, Bowen W. J. Simultaneous measurement of ATPase and superprecipitation of myosin B. Anal Biochem. 1968 Oct 24;25(1):136–145. doi: 10.1016/0003-2697(68)90087-0. [DOI] [PubMed] [Google Scholar]
- GEBICKI J. M., HUNTER F. E., Jr DETERMINATION OF SWELLING AND DISINTEGRATION OF MITOCHONDRIA WITH AN ELECTRONIC PARTICLE COUNTER. J Biol Chem. 1964 Feb;239:631–639. [PubMed] [Google Scholar]
- Grover N. B., Naaman J., Ben-Sasson S., Doljanski F. Electrical sizing of particles in suspensions. I. Theory. Biophys J. 1969 Nov;9(11):1398–1414. doi: 10.1016/S0006-3495(69)86461-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazlewood C. F., Nichols B. L., Chamberlain N. F. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature. 1969 May 24;222(5195):747–750. doi: 10.1038/222747a0. [DOI] [PubMed] [Google Scholar]
- Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill A. V. The pressure developed in muscle during contraction. J Physiol. 1948 Sep 30;107(4):518–526. doi: 10.1113/jphysiol.1948.sp004296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
- IZAWA S., ITOH M., SHIBATA K. ACTION SPECTRUM FOR THE SHRINKAGE OF CHLOROPLASTS. Biochim Biophys Acta. 1963 Nov 29;75:349–354. doi: 10.1016/0006-3002(63)90622-x. [DOI] [PubMed] [Google Scholar]
- Ikkai T., Ooi T. The effects of pressure on actomyosin systems. Biochemistry. 1969 Jun;8(6):2615–2622. doi: 10.1021/bi00834a054. [DOI] [PubMed] [Google Scholar]
- Kominz D. R. Studies of adenosine triphosphatase activity and turbidity in myofibril and actomyosin suspensions. Biochemistry. 1970 Apr 14;9(8):1792–1801. doi: 10.1021/bi00810a019. [DOI] [PubMed] [Google Scholar]
- LYNN W. S. EFFECTS OF CATIONS, POLYANIONS, AND SULFHYDRYL REAGENTS ON MUSCLE PROTEINS. Arch Biochem Biophys. 1965 May;110:262–269. doi: 10.1016/0003-9861(65)90118-9. [DOI] [PubMed] [Google Scholar]
- MARSH B. B. The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim Biophys Acta. 1952 Sep;9(3):247–260. doi: 10.1016/0006-3002(52)90159-5. [DOI] [PubMed] [Google Scholar]
- MARUYAMA K., GERGELY J. Interaction of actomyosin with adenosine triphosphate at low ionic strength. II. Factors influencing clearing and superprecipitation: adenosine triphosphatase and birefringence of flow studies. J Biol Chem. 1962 Apr;237:1100–1106. [PubMed] [Google Scholar]
- MATTERN C. F., BRACKETT F. S., OLSON B. J. Determination of number and size of particles by electrical gating: blood cells. J Appl Physiol. 1957 Jan;10(1):56–70. doi: 10.1152/jappl.1957.10.1.56. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Kominz D. R. Reversibility of myofibrillar turbidity and ATPase activity changes. J Biochem. 1969 Mar;65(3):465–470. doi: 10.1093/oxfordjournals.jbchem.a129035. [DOI] [PubMed] [Google Scholar]
- Matsunaga T., Noda H. A study on the mechanism of superprecipitation of myosin B. J Biochem. 1966 Dec;60(6):674–681. doi: 10.1093/oxfordjournals.jbchem.a128493. [DOI] [PubMed] [Google Scholar]
- PODOLSKY R. J., COSTANTIN L. L. REGULATION BY CALCIUM OF THE CONTRACTION AND RELAXATION OF MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:933–939. [PubMed] [Google Scholar]
- Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
- RANNEY R. E. Spontaneous relaxation in glycerol-extracted muscle fiber bundles. Am J Physiol. 1954 Oct;179(1):99–103. doi: 10.1152/ajplegacy.1954.179.1.99. [DOI] [PubMed] [Google Scholar]
- Raff E. C., Blum J. J. The effects of adenosine triphosphate and related compounds on some hydrodynamic properties of glycerinated cilia. J Cell Biol. 1966 Dec;31(3):445–453. doi: 10.1083/jcb.31.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ubitschek H. E. Linear cell growth in Escherichia coli. Biophys J. 1968 Jul;8(7):792–804. doi: 10.1016/s0006-3495(68)86521-x. [DOI] [PMC free article] [PubMed] [Google Scholar]





