Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1971 Jan;11(1):110–122. doi: 10.1016/S0006-3495(71)86199-4

Independence of the Sodium and Potassium Conductance Channels

A Kinetic Argument

Rosalie C Hoyt
PMCID: PMC1484037  PMID: 5538996

Abstract

Tightly coupled models for the sodium and potassium conductance changes, in which the potassium “on” process is intimately related to the sodium “on” and “off” processes, are studied. It is shown that such coupled models are incapable of simultaneously showing the observed effects of conditioning potentials on sodium inactivation and on the translation of the potassium conductance in time. It is concluded that the primary mechanisms for the sodium and potassium channels are probably independent.

Full text

PDF
110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Palti Y. The influence of external potassium on the inactivation of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969 Jun;53(6):685–703. doi: 10.1085/jgp.53.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 1969 Nov;54(5):553–575. doi: 10.1085/jgp.54.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrenstein G., Gilbert D. L. Slow changes of potassium permeability in the squid giant axon. Biophys J. 1966 Sep;6(5):553–566. doi: 10.1016/S0006-3495(66)86677-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOYT R. C. THE SQUID GIANT AXON. MATHEMATICAL MODELS. Biophys J. 1963 Sep;3:399–431. doi: 10.1016/s0006-3495(63)86829-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoyt R. C., Adelman W. J., Jr Sodium inactivation. Experimental test of two models. Biophys J. 1970 Jul;10(7):610–617. doi: 10.1016/S0006-3495(70)86323-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoyt R. C. Sodium inactivation in nerve fibers. Biophys J. 1968 Oct;8(10):1074–1097. doi: 10.1016/S0006-3495(68)86540-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MULLINS L. J. An analysis of pore size in excitable membranes. J Gen Physiol. 1960 May;43:105–117. doi: 10.1085/jgp.43.5.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mullins L. J. A single channel or a dual channel mechanism for nerve excitation. J Gen Physiol. 1968 Sep;52(3):550–556. doi: 10.1085/jgp.52.3.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mullins L. J. Single or dual channel mechanisms. J Gen Physiol. 1968 Sep 1;52(3):555–556. doi: 10.1085/jgp.52.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Narahashi T., Moore J. W. A single or dual channel in nerve membranes. J Gen Physiol. 1968 Sep 1;52(3):553–555. doi: 10.1085/jgp.52.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES