Abstract
The 23Na spectrum from liquid crystals of sodium linoleate in water has been studied by nuclear magnetic resonance (NMR) techniques. The integrated intensity of the visible central spectral line was 34-39% of the intensity of a reference sample containing an equal quantity and concentration of 23Na nuclei. Since satellite signals were clearly demonstrable, the effect reflected a nuclear quadrupolar interaction rather than a splitting of the 23Na into two populations of bound and free nuclei. It is proposed that a similar quadrupolar effect may be the basis for the apparent binding of the 23Na observed in biological systems.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the protoplasm of a giant nerve fibre with artificial solutions. Nature. 1961 Jun 3;190:885–887. doi: 10.1038/190885a0. [DOI] [PubMed] [Google Scholar]
- COPE F. W. A THEORY OF ION TRANSPORT ACROSS CELL SURFACES BY A PROCESS ANALOGOUS TO ELECTRON TRANSPORT ACROSS LIQUID-SOLID INTERFACES. Bull Math Biophys. 1965 Mar;27:99–109. doi: 10.1007/BF02476472. [DOI] [PubMed] [Google Scholar]
- Cope F. W. A non-equilibrium thermodynamic theory of leakage of complexed Na+ from muscle, with NMR evidence that the non-complexed fraction of muscle Na+ is intra-vacuolar rather than extra-cellular. Bull Math Biophys. 1967 Dec;29(4):691–704. doi: 10.1007/BF02476920. [DOI] [PubMed] [Google Scholar]
- Cope F. W. Nuclear magnetic resonance evidence for complexing of sodium ions in muscle. Proc Natl Acad Sci U S A. 1965 Jul;54(1):225–227. doi: 10.1073/pnas.54.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cope F. W. Spin-echo nuclear magnetic resonance evidence for complexing of sodium ions in muscle, brain, and kidney. Biophys J. 1970 Sep;10(9):843–858. doi: 10.1016/S0006-3495(70)86339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czeisler J. L., Fritz O. G., Jr, Swift T. J. Direct evidence from nuclear magnetic resonance studies for bound sodium in forg skeletal muscle. Biophys J. 1970 Mar;10(3):260–268. doi: 10.1016/s0006-3495(70)86298-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARDOS G. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol Acad Sci Hung. 1954;6(2-3):191–199. [PubMed] [Google Scholar]
- HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haynes D. H., Pressman B. C., Kowalsky A. A nuclear magnetic resonance study of 23Na+ complexing by ionophores. Biochemistry. 1971 Mar 2;10(5):852–860. doi: 10.1021/bi00781a019. [DOI] [PubMed] [Google Scholar]
- Huneeus-Cox F., Fernandez H. L., Smith B. H. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys J. 1966 Sep;6(5):675–689. doi: 10.1016/S0006-3495(66)86686-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JARDETZKY O., WERTZ J. E. The complexing of sodium ion with some common metabolites. Arch Biochem Biophys. 1956 Dec;65(2):569–572. doi: 10.1016/0003-9861(56)90215-6. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Cope F. W. Potassium ion: is the bulk of intracellular K+ adsorbed? Science. 1969 Mar 21;163(3873):1335–1336. doi: 10.1126/science.163.3873.1335. [DOI] [PubMed] [Google Scholar]
- Martinez D., Silvidi A. A., Stokes R. M. Nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver. Biophys J. 1969 Oct;9(10):1256–1260. doi: 10.1016/S0006-3495(69)86450-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
- Rotunno C. A., Kowalewski V., Cereijido M. Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim Biophys Acta. 1967 Feb 1;135(1):170–173. doi: 10.1016/0005-2736(67)90022-3. [DOI] [PubMed] [Google Scholar]
- SHAW F. H., SIMON S. E. The nature of the sodium and potassium balance in nerve and muscle cells. Aust J Exp Biol Med Sci. 1955 Apr;33(2):153–177. doi: 10.1038/icb.1955.17. [DOI] [PubMed] [Google Scholar]
- Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
