Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1973 Jan;13(1):14–36. doi: 10.1016/S0006-3495(73)85967-3

The Anisotropic Elastic Properties of the Sarcolemma of the Frog Semitendinosus Muscle Fiber

Stanley I Rapoport
PMCID: PMC1484174  PMID: 4541138

Abstract

Tension and curvature of the sarcolemmal tube of the frog muscle fiber were measured at different extensions and were used to calculate the anisotropic elastic properties of the sarcolemma. A model was derived to obtain the four parameters of the elasticity matrix of the sarcolemma. Sarcolemmal thickness was taken as 0.1 μm. Over the range of reversible sarcolemmal tube extension, the longitudinal elastic modulus EL = 6.3 × 107 dyn/cm2, the circumferential modulus Ec = 0.88 × 107 dyn/cm2, the longitudinal Poisson's ratio σL = 1.2, and the circumferential Poisson's ratio σc = 0.18. At tubular rest length EL = 1.2 × 107 dyn/cm2. The sarcolemma is less extensible in the longitudinal direction along the fiber axis than in the circumferential direction. It can be extended reversibly to 48% of its rest length, equivalent to extending the intact fiber from a sarcomere length of 3 μm to about 4.5 μm. The sarcolemma does not contribute to intact fiber tension at fiber sarcomere lengths <3 μm, and between 3 and 4 μm its contribution is about 20%. It also exerts a pressure on the myoplasm, which can be calculated by means of the model. The longitudinal elastic modulus of the whole fiber is 1 × 105 dyn/cm2 at a sarcomere length of 2.33 μm.

Full text

PDF
14

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abood L. G., Kurahasi K., Brunngraber E., Koketsu K. Biochemical analysis of isolated bullfrog sarcolemma. Biochim Biophys Acta. 1966 Feb 7;112(2):330–339. doi: 10.1016/0926-6585(66)90331-1. [DOI] [PubMed] [Google Scholar]
  2. CARTON R. W., DAINAUSKAS J., CLARK J. W. Elastic properties of single elastic fibers. J Appl Physiol. 1962 May;17:547–551. doi: 10.1152/jappl.1962.17.3.547. [DOI] [PubMed] [Google Scholar]
  3. CASELLA C. Tensile force in total striated muscle, isolated fibre and sarcolemma. Acta Physiol Scand. 1950 Dec;21(4):380–401. doi: 10.1111/j.1748-1716.1950.tb00744.x. [DOI] [PubMed] [Google Scholar]
  4. DELEZE J. B. The mechanical properties of the semitendinosus muscle at lengths greater than its length in the body. J Physiol. 1961 Sep;158:154–164. [PMC free article] [PubMed] [Google Scholar]
  5. Edman K. A. The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J Physiol. 1966 Mar;183(2):407–417. doi: 10.1113/jphysiol.1966.sp007873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fields R. W., Faber J. J. Biophysical analysis of the mechanical properties of the sarcolemma. Can J Physiol Pharmacol. 1970 Jun;48(6):394–404. doi: 10.1139/y70-062. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  8. KOKETSU K., KITAMURA R., TANAKA R. BINDING OF CALCIUM IONS TO CELL MEMBRANE ISOLATED FROM BULLFROG SKELETAL MUSCLE. Am J Physiol. 1964 Aug;207:509–512. doi: 10.1152/ajplegacy.1964.207.2.509. [DOI] [PubMed] [Google Scholar]
  9. MAURO A., ADAMS W. R. The structure of the sarcolemma of the frog skeletal muscle fiber. J Biophys Biochem Cytol. 1961 Aug;10(4):177–185. doi: 10.1083/jcb.10.4.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mullins G. L., Guntheroth W. G. A collagen net hypothesis for force transference of smooth muscle. Nature. 1965 May 8;206(984):592–594. doi: 10.1038/206592a0. [DOI] [PubMed] [Google Scholar]
  11. PODOLSKY R. J. THE MAXIMUM SARCOMERE LENGTH FOR CONTRACTION OF ISOLATED MYOFIBRILS. J Physiol. 1964 Jan;170:110–123. doi: 10.1113/jphysiol.1964.sp007317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rapoport S. I. Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. J Gen Physiol. 1972 May;59(5):559–585. doi: 10.1085/jgp.59.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Street S. F., Ramsey R. W. Sarcolemma: transmitter of active tension in frog skeletal muscle. Science. 1965 Sep 17;149(3690):1379–1380. doi: 10.1126/science.149.3690.1379. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES