Abstract
We developed a dynamic model to account for blood flow in the working muscle during step changes in work rate. The model contains a proportional controller based on oxygen tension in the muscle and a description of the various oxygen-equivalent energy stores. Because of nonlinearities only particular solutions can be obtained. Such solutions were obtained via the finite difference method for various work levels and regimens. Model predictions are presented in comparisons with new experimental data, and with data reported in the literature. The changes in oxygen-equivalent energy stores and in muscle blood flow occur very rapidly after onset of exercise, with at least 90% of the steady-state response being reached within 90 sec.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASMUSSEN E., NIELSEN M. Cardiac output during muscular work and its regulation. Physiol Rev. 1955 Oct;35(4):778–800. doi: 10.1152/physrev.1955.35.4.778. [DOI] [PubMed] [Google Scholar]
- Broman S., Wigertz O. Transient dynamics of ventilation and heart rate with step changes in work load from different load levels. Acta Physiol Scand. 1971 Jan;81(1):54–74. doi: 10.1111/j.1748-1716.1971.tb04877.x. [DOI] [PubMed] [Google Scholar]
- Cardus D., Zeigler R. K. Heart-beat frequenzy curves. A mathematical model. Comput Biomed Res. 1968 May;1(5):508–526. doi: 10.1016/0010-4809(68)90017-7. [DOI] [PubMed] [Google Scholar]
- Di Prampero P. E., Davies C. T., Cerretelli P., Margaria R. An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol. 1970 Nov;29(5):547–551. doi: 10.1152/jappl.1970.29.5.547. [DOI] [PubMed] [Google Scholar]
- Gilbert R., Auchincloss J. H., Jr, Baule G. H. Metabolic and circulatory adjustments to unsteady-state exercise. J Appl Physiol. 1967 May;22(5):905–912. doi: 10.1152/jappl.1967.22.5.905. [DOI] [PubMed] [Google Scholar]
- Gilbert R., Baule G. H., Auchincloss J. H., Jr Theoretical aspects of oxygen transfer during early exercise. J Appl Physiol. 1966 May;21(3):803–809. doi: 10.1152/jappl.1966.21.3.803. [DOI] [PubMed] [Google Scholar]
- Jones W. B., Finchum R. N., Russell R. O., Jr, Reeves T. J. Transient cardiac output response to multiple levels of supine exercise. J Appl Physiol. 1970 Feb;28(2):183–189. doi: 10.1152/jappl.1970.28.2.183. [DOI] [PubMed] [Google Scholar]
- Marx H. J., Rowell L. B., Conn R. D., Bruce R. A., Kusumi F. Maintenance of aortic pressure and total peripheral resistance during exercise in heat. J Appl Physiol. 1967 Mar;22(3):519–525. doi: 10.1152/jappl.1967.22.3.519. [DOI] [PubMed] [Google Scholar]
- Stolwijk J. A., Hardy J. D. Temperature regulation in man--a theoretical study. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;291(2):129–162. doi: 10.1007/BF00412787. [DOI] [PubMed] [Google Scholar]
- THOMAS H. D., BOSHELL B., GAOS C., REEVES T. J. CARDIAC OUTPUT DURING EXERCISE AND ANAEROBIC METABOLISM IN MAN. J Appl Physiol. 1964 Sep;19:839–848. doi: 10.1152/jappl.1964.19.5.839. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Van Kessel A. L., Burton G. G. Interaction of physiological mechanisms during exercise. J Appl Physiol. 1967 Jan;22(1):71–85. doi: 10.1152/jappl.1967.22.1.71. [DOI] [PubMed] [Google Scholar]
- Whipp B. J., Seard C., Wasserman K. Oxygen deficit-oxygen debt relationships and efficiency of anaerobic work. J Appl Physiol. 1970 Apr;28(4):452–456. doi: 10.1152/jappl.1970.28.4.452. [DOI] [PubMed] [Google Scholar]
