Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1972 Jul;12(7):764–773. doi: 10.1016/S0006-3495(72)86120-4

Light Scattering at Various Angles

Theoretical Predictions of the Effects of Particle Volume Changes

Paul Latimer, B E Pyle
PMCID: PMC1484278  PMID: 4556610

Abstract

The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering.

Full text

PDF
764

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Born G. V., Hume M. Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature. 1967 Sep 2;215(5105):1027–1029. doi: 10.1038/2151027a0. [DOI] [PubMed] [Google Scholar]
  2. Bryant F. D., Latimer P., Seiber B. A. Changes in total light scattering and absorption caused by changes in particle conformation--a test of theory. Arch Biochem Biophys. 1969 Dec;135(1):109–117. doi: 10.1016/0003-9861(69)90521-9. [DOI] [PubMed] [Google Scholar]
  3. Bryant F. D., Seiber B. A., Latimer P. Absolute optical cross sections of cells and chloroplasts. Arch Biochem Biophys. 1969 Dec;135(1):97–108. doi: 10.1016/0003-9861(69)90520-7. [DOI] [PubMed] [Google Scholar]
  4. CLELAND K. W. Permeability of isolated rat heart sarcosomes. Nature. 1952 Sep 20;170(4325):497–499. doi: 10.1038/170497a0. [DOI] [PubMed] [Google Scholar]
  5. KOCH A. L. Some calculations on the turbidity of mitochondria and bacteria. Biochim Biophys Acta. 1961 Aug 19;51:429–441. doi: 10.1016/0006-3002(61)90599-6. [DOI] [PubMed] [Google Scholar]
  6. Koch A. L., Ehrenfeld E. Th size and shape of bacteria by light scattering measurements. Biochim Biophys Acta. 1968 Sep 3;165(2):262–273. doi: 10.1016/0304-4165(68)90054-8. [DOI] [PubMed] [Google Scholar]
  7. LATIMER P., EUBANKS C. A. Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions. Arch Biochem Biophys. 1962 Aug;98:274–285. doi: 10.1016/0003-9861(62)90184-4. [DOI] [PubMed] [Google Scholar]
  8. Latimer P., Moore D. M., Bryant F. D. Changes in total light scattering and absorption caused by changes in particle conformation. J Theor Biol. 1968 Dec;21(3):348–367. doi: 10.1016/0022-5193(68)90120-3. [DOI] [PubMed] [Google Scholar]
  9. Latimer P., Tully B. Small-angle scattering by yeast cells--a comparison with the Mie predictions. J Colloid Interface Sci. 1968 Jul;27(3):475–478. doi: 10.1016/0021-9797(68)90184-7. [DOI] [PubMed] [Google Scholar]
  10. MACRAE R. A., McCLURE J. A., LATIMER P. Spectral transmission and scattering properties of red blood cells. J Opt Soc Am. 1961 Dec;51:1366–1372. doi: 10.1364/josa.51.001366. [DOI] [PubMed] [Google Scholar]
  11. PACKER L. STRUCTURAL CHANGES CORRELATED WITH PHOTOCHEMICAL PHOSPHORYLATION IN CHLOROPLAST MEMBRANES. Biochim Biophys Acta. 1963 Jul 23;75:12–22. doi: 10.1016/0006-3002(63)90574-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES