Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1973 Apr;13(4):340–358. doi: 10.1016/S0006-3495(73)85989-2

A Model of Peritubular Capillary Control of Isotonic Fluid Reabsorption by the Renal Proximal Tubule

W M Deen, C R Robertson, B M Brenner
PMCID: PMC1484293  PMID: 4696761

Abstract

A mathematical model of peritubular transcapillary fluid exchange has been developed to investigate the role of the peritubular environment in the regulation of net isotonic fluid transport across the mammalian renal proximal tubule. The model, derived from conservation of mass and the Starling transcapillary driving forces, has been used to examine the quantitative effects on proximal reabsorption of changes in efferent arteriolar protein concentration and plasma flow rate. Under normal physiological conditions, relatively small perturbations in protein concentration are predicted to influence reabsorption more than even large variations in plasma flow, a prediction in close accord with recent experimental observations in the rat and dog. Changes either in protein concentration or plasma flow have their most pronounced effects when the opposing transcapillary hydrostatic and osmotic pressure differences are closest to equilibrium. Comparison of these theoretical results with variations in reabsorption observed in micropuncture studies makes it possible to place upper and lower bounds on the difference between interstitial oncotic and hydrostatic pressures in the renal cortex of the rat.

Full text

PDF
340

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bossert W. H., Schwartz W. B. Relation of pressure and flow to control of sodium reabsorption in the proximal tubule. Am J Physiol. 1967 Sep;213(3):793–802. doi: 10.1152/ajplegacy.1967.213.3.793. [DOI] [PubMed] [Google Scholar]
  2. Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
  3. Brenner B. M., Troy J. L., Daugharty T. M., Deen W. M., Robertson C. R. Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol. 1972 Nov;223(5):1184–1190. doi: 10.1152/ajplegacy.1972.223.5.1184. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Troy J. L., Daugharty T. M., MacInnes R. M. Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat. J Clin Invest. 1973 Jan;52(1):190–197. doi: 10.1172/JCI107164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B. M., Troy J. L., Daugharty T. M. Pressures in cortical structures of the rat kidney. Am J Physiol. 1972 Feb;222(2):246–251. doi: 10.1152/ajplegacy.1972.222.2.246. [DOI] [PubMed] [Google Scholar]
  6. Brenner B. M., Troy J. L., Daugharty T. M. The dynamics of glomerular ultrafiltration in the rat. J Clin Invest. 1971 Aug;50(8):1776–1780. doi: 10.1172/JCI106667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner B. M., Troy J. L. Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotublar balance by the renal proximal tubule. J Clin Invest. 1971 Feb;50(2):336–349. doi: 10.1172/JCI106501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daugharty T. M., Ueki I. F., Nicholas D. P., Brenner B. M. Comparative renal effects of isoncotic and colloid-free volume expansion in the rat. Am J Physiol. 1972 Jan;222(1):225–235. doi: 10.1152/ajplegacy.1972.222.1.225. [DOI] [PubMed] [Google Scholar]
  9. Daugharty T. M., Zweig S. M., Earley L. E. Assessment of renal hemodynamic factors in whole kidney glomerulotubular balance. Am J Physiol. 1971 Jun;220(6):2021–2027. doi: 10.1152/ajplegacy.1971.220.6.2021. [DOI] [PubMed] [Google Scholar]
  10. Deen W. M., Robertson C. R., Brenner B. M. A model of glomerular ultrafiltration in the rat. Am J Physiol. 1972 Nov;223(5):1178–1183. doi: 10.1152/ajplegacy.1972.223.5.1178. [DOI] [PubMed] [Google Scholar]
  11. GIEBISCH G., KLOSE R. M., MALNIC G., SULLIVAN W. J., WINDHAGER E. E. SODIUM MOVEMENT ACROSS SINGLE PERFUSED PROXIMAL TUBULES OF RAT KIDNEYS. J Gen Physiol. 1964 Jul;47:1175–1194. doi: 10.1085/jgp.47.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am J Physiol. 1957 May;189(2):323–328. doi: 10.1152/ajplegacy.1957.189.2.323. [DOI] [PubMed] [Google Scholar]
  13. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
  14. Intaglietta M., Pawula R. F., Tompkins W. R. Pressure measurements in the mammalian microvasculature. Microvasc Res. 1970 Apr;2(2):212–220. doi: 10.1016/0026-2862(70)90009-9. [DOI] [PubMed] [Google Scholar]
  15. Intaglietta M., Richardson D. R., Tompkins W. R. Blood pressure, flow, and elastic properties in microvessels of cat omentum. Am J Physiol. 1971 Sep;221(3):922–928. doi: 10.1152/ajplegacy.1971.221.3.922. [DOI] [PubMed] [Google Scholar]
  16. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  17. Knox F. G., Willis L. R., Strandhoy J. W., Schneider E. G. Hydrostatic pressures in proximal tubules and peritubule capillaries in the dog. Kidney Int. 1972 Jul;2(1):11–16. doi: 10.1038/ki.1972.64. [DOI] [PubMed] [Google Scholar]
  18. Knox F. G., Willis L. R., Strandhoy J. W., Schneider E. G., Navar L. G., Ott C. E. Role of peritubule Starling forces in proximal reabsorption following albumin infusion. Am J Physiol. 1972 Oct;223(4):741–749. doi: 10.1152/ajplegacy.1972.223.4.741. [DOI] [PubMed] [Google Scholar]
  19. Koch K. M., Dume T., Krause H. H., Ochwadt B. Intratubulärer Druck, glomerulärer Capillardruck und Glomerulumfiltrat während Mannit-Diurese. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(1):72–79. [PubMed] [Google Scholar]
  20. Koushanpour E., Tarica R. R., Stevens W. F. Mathematical simulation of normal nephron function in rat and man. J Theor Biol. 1971 May;31(2):177–214. doi: 10.1016/0022-5193(71)90182-2. [DOI] [PubMed] [Google Scholar]
  21. Krause H. H., Dume T., Koch K. M., Ochwadt B. Intratubulärer Druck, glomerulärer Capillardruck und Glomerulumfiltrat nach Furosemid und Hydrochlorothiazid. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(1):80–89. [PubMed] [Google Scholar]
  22. LeBrie S. J. Renal lymph and osmotic diuresis. Am J Physiol. 1968 Jul;215(1):116–123. doi: 10.1152/ajplegacy.1968.215.1.116. [DOI] [PubMed] [Google Scholar]
  23. Lee J. S., Smaje L. H., Zweifach B. W. Fluid movement in occluded single capillaries of rabbit omentum. Circ Res. 1971 Mar;28(3):358–370. doi: 10.1161/01.res.28.3.358. [DOI] [PubMed] [Google Scholar]
  24. Levy M., Levinsky N. G. Proximal reabsorption and intrarenal pressure during colloid infusions in the dog. Am J Physiol. 1971 Feb;220(2):415–421. doi: 10.1152/ajplegacy.1971.220.2.415. [DOI] [PubMed] [Google Scholar]
  25. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  26. Maude D. L. Mechanism of salt transport and some permeability properties of rat proximal tubule. Am J Physiol. 1970 Jun;218(6):1590–1595. doi: 10.1152/ajplegacy.1970.218.6.1590. [DOI] [PubMed] [Google Scholar]
  27. Morel F., Murayama Y. Simultaneous measurement of undirectional and net sodium fluxes in microperfused rat proximal tubules. Pflugers Arch. 1970;320(1):1–23. doi: 10.1007/BF00588454. [DOI] [PubMed] [Google Scholar]
  28. Ott C. E., Navar L. G., Guyton A. C. Pressures in static and dynamic states from capsules implanted in the kidney. Am J Physiol. 1971 Aug;221(2):394–400. doi: 10.1152/ajplegacy.1971.221.2.394. [DOI] [PubMed] [Google Scholar]
  29. Palatt P. J., Saidel G. M., Macklin M. Transport processes in the renal cortex. J Theor Biol. 1970 Nov;29(2):251–274. doi: 10.1016/0022-5193(70)90021-4. [DOI] [PubMed] [Google Scholar]
  30. Richardson D. R., Zweifach B. W. Pressure relationships in the macro- and microcirculation of the mesentery. Microvasc Res. 1970 Oct;2(4):474–488. doi: 10.1016/0026-2862(70)90040-3. [DOI] [PubMed] [Google Scholar]
  31. Robertson C. R., Deen W. M., Troy J. L., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol. 1972 Nov;223(5):1191–1200. doi: 10.1152/ajplegacy.1972.223.5.1191. [DOI] [PubMed] [Google Scholar]
  32. Schrier R. W., Humphreys M. H. Role of distal reabsorption and peritubular environment in glomerulotubular balance. Am J Physiol. 1972 Feb;222(2):379–387. doi: 10.1152/ajplegacy.1972.222.2.379. [DOI] [PubMed] [Google Scholar]
  33. Wunderlich P., Persson E., Schnermann J., Ulfendahl H., Wolgast M. Hydrostatic pressure in the subcapsular interstitial space of rat and dog kidneys. Pflugers Arch. 1971;328(4):307–319. doi: 10.1007/BF00586833. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES