Abstract
A close correlation (r = +0.96) exists between the permeability (at 0°, 4°, and 25°C) of H2O and nine other hydroxylic nonelectrolytes through reversed frog skin and through synthetic cellulose-acetate sheets. By the method of least squares, the data yield the following relation: log (Pfrog skin) = 0.9900 log (Pcellulose acetate) -0.1659. Both the reversed frog skin and the cellulose-acetate sheets are semipermeable (while the lipoid membrane is not), showing higher permeability to water than to any other solute used in this series. The data offer support for the theory that it is not lipid, but water polarized in multilayers by cellular proteins, that provides the living cell with its selective surface barrier.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Diamond J. M., Wright E. M. Molecular forces governing non-electrolyte permeation through cell membranes. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):273–316. doi: 10.1098/rspb.1969.0022. [DOI] [PubMed] [Google Scholar]
- Fleischer S., Fleischer B., Stoeckenius W. Fine structure of lipid-depleted mitochondria. J Cell Biol. 1967 Jan;32(1):193–208. doi: 10.1083/jcb.32.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulati J. Cooperative interaction of external calcium, sodium, and ouabain with the cellular potassium in smooth muscle. Ann N Y Acad Sci. 1973 Mar 30;204:337–357. doi: 10.1111/j.1749-6632.1973.tb30789.x. [DOI] [PubMed] [Google Scholar]
- Jones A. W. Control of cooperative K accumulation in smooth muscle by divalent ions. Ann N Y Acad Sci. 1973 Mar 30;204:379–392. doi: 10.1111/j.1749-6632.1973.tb30792.x. [DOI] [PubMed] [Google Scholar]
- Kraus K. A., Marcinkowsky A. E., Johnson J. S., Shor A. J. Salt rejection by a porous glass. Science. 1966 Jan 14;151(3707):194–195. doi: 10.1126/science.151.3707.194. [DOI] [PubMed] [Google Scholar]
- Ling G. N. A new model for the living cell: a summary of the theory and recent experimental evidence in its support. Int Rev Cytol. 1969;26:1–61. doi: 10.1016/s0074-7696(08)61633-2. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Ochsenfeld M. M. Control of cooperative adsorption of solutes and water in living cells by hormones, drugs, and metabolic products. Ann N Y Acad Sci. 1973 Mar 30;204:325–336. doi: 10.1111/j.1749-6632.1973.tb30788.x. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Ochsenfeld M. M. Studies on the ionic permeability of muscle cells and their models. Biophys J. 1965 Nov;5(6):777–807. doi: 10.1016/S0006-3495(65)86752-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ling G. N. The physical state of water in living cell and model systems. Ann N Y Acad Sci. 1965 Oct 13;125(2):401–417. doi: 10.1111/j.1749-6632.1965.tb45406.x. [DOI] [PubMed] [Google Scholar]
- Ling G. N. The physical state of water in living cells and its physiological significance. Int J Neurosci. 1970 Dec;1(2):129–152. doi: 10.3109/00207457009147626. [DOI] [PubMed] [Google Scholar]
- Napolitano L., Lebaron F., Scaletti J. Preservation of myelin lamellar structure in the absence of lipid. A correlated chemical and morphological study. J Cell Biol. 1967 Sep;34(3):817–826. doi: 10.1083/jcb.34.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
