Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1973 Oct;13(10):1054–1070. doi: 10.1016/S0006-3495(73)86045-X

Propagation Speed in Myelinated Nerve

I. Experimental Dependence on External Na+ and on Temperature

W L Hardy
PMCID: PMC1484345  PMID: 4542940

Abstract

Conduction speed (θ) in single myelinated Rana pipiens sciatic nerve fibers has been precisely measured using intracellular recording and on-line digital computer techniques. The dependence of relative speed on external Na concentration at 15°C has been found to be ln(θ12) = 0.524 (±0.018) ln ([Na+]1/[Na+]2) + 0.003. Thus θ has very close to a square root dependence on [Na+]0 for these fibers. This experimental finding is not in complete agreement with a theoretical prediction based on a solution of the Hodgkin-Huxley (H.H.) equations. The effect of small temperature variations around 15°C on θ has also been measured for Rana fibers in Ringer's solution. θ has close to an exponential dependence on T and a Q10 of 2.95 has been estimated.

Full text

PDF
1054

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Colquhoun D., Ritchie J. M. The interaction at equilibrium between tetrodotoxin and mammalian non-myelinated nerve fibres. J Physiol. 1972 Mar;221(3):533–553. doi: 10.1113/jphysiol.1972.sp009766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., WALTMAN B. Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J Physiol. 1959 Oct;148:677–682. doi: 10.1113/jphysiol.1959.sp006317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HURLBUT W. P. SODIUM FLUXES IN DESHEATHED FROG SCIATIC NERVE. J Gen Physiol. 1963 Jul;46:1191–1222. doi: 10.1085/jgp.46.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUXLEY A. F., STAMPFLI R. Direct determination of membrane resting potential and action potential in single myelinated nerve fibers. J Physiol. 1951 Feb;112(3-4):476–495. doi: 10.1113/jphysiol.1951.sp004545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hardy W. L. Propagation speed in myelinated nerve. II. Theoretical dependence on external Na and on temperature. Biophys J. 1973 Oct;13(10):1071–1089. doi: 10.1016/S0006-3495(73)86046-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hurlbut W. P. Salicylate: effects on ion transport and afterpotentials in frog sciatic nerve. Am J Physiol. 1965 Dec;209(6):1295–1303. doi: 10.1152/ajplegacy.1965.209.6.1295. [DOI] [PubMed] [Google Scholar]
  10. Hutchinson N. A., Koles Z. J., Smith R. S. Conduction velocity in myelinated nerve fibres of Xenopus laevis. J Physiol. 1970 Jun;208(2):279–289. doi: 10.1113/jphysiol.1970.sp009119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moore L. E. Effect of temperature and calcium ions on rate constants of myelinated nerve. Am J Physiol. 1971 Jul;221(1):131–137. doi: 10.1152/ajplegacy.1971.221.1.131. [DOI] [PubMed] [Google Scholar]
  12. Segal J. R. Metabolic dependence of resting and action potentials of frog nerve. Am J Physiol. 1970 Nov;219(5):1216–1225. doi: 10.1152/ajplegacy.1970.219.5.1216. [DOI] [PubMed] [Google Scholar]
  13. WOODBURY J. W. Direct membrane resting and action potentials from single myelinated nerve fibers. J Cell Physiol. 1952 Apr;39(2):323–339. doi: 10.1002/jcp.1030390210. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES