Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1973 Sep;13(9):955–993. doi: 10.1016/S0006-3495(73)86037-0

The Contractile Mechanism in Cilia

Robert Rikmenspoel, Walter G Rudd
PMCID: PMC1484368  PMID: 4733702

Abstract

A detailed analysis is made of the motion and the forces in the cilium of Sabellaria over the complete cycle. The results indicate that the stiffness of the cilium is directly related to the moments produced by the internal contractile elements. A sliding filament model is developed to generate the complete cycle of motion. The activation of the force-producing elements, the peripheral fibers, occurs over their entire length at once during the effective stroke. In the recovery stroke the sliding of peripheral fibers relative to each other produces activation. The peripheral fibers contribute to the stiffness of the cilium in the sliding filament model only when they are not free to slide because of cross-linkage. The model describes successfully the motion of a variety of types of cilia.

Full text

PDF
955

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The fine structure of the cilia from ctenophore swimming-plates. J Biophys Biochem Cytol. 1961 Feb;9:383–394. doi: 10.1083/jcb.9.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brokaw C. J. Flagellar movement: a sliding filament model. Science. 1972 Nov 3;178(4060):455–462. doi: 10.1126/science.178.4060.455. [DOI] [PubMed] [Google Scholar]
  3. GIBBONS I. R. STUDIES ON THE PROTEIN COMPONENTS OF CILIA FROM TETRAHYMENA PYRIFORMIS. Proc Natl Acad Sci U S A. 1963 Nov;50:1002–1010. doi: 10.1073/pnas.50.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbons I. R., Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. doi: 10.1083/jcb.54.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kinosita H., Murakami A. Control of ciliary motion. Physiol Rev. 1967 Jan;47(1):53–82. doi: 10.1152/physrev.1967.47.1.53. [DOI] [PubMed] [Google Scholar]
  6. Lubliner J., Blum J. J. Model of flagellar waves. J Theor Biol. 1972 Mar;34(3):515–534. doi: 10.1016/0022-5193(72)90139-7. [DOI] [PubMed] [Google Scholar]
  7. Rikmenspoel R., van Herpen G. Radiation damage to bull sperm motility. II. Proton irradiation and respiration measurements. Biophys J. 1969 Jun;9(6):833–844. doi: 10.1016/S0006-3495(69)86421-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES