Abstract
NF-Y is a trimeric CCAAT-binding factor with histone fold subunits (NF-YB/NF-YC) and bipartite activation domains located on NF-YA and NF-YC. We reconstituted the NF-Y activation potential in vivo with GAL4 DBD fusions. In the GAL4-YA configuration, activation requires co-expression of the three subunits; with GAL4-YB and GAL4-YC, transfections of the histone fold partners are sufficient, provided that the Q-rich domain of NF-YC is present. Combinations of mutants indicate that the Q-rich domains of NF-YA and NF-YC are redundant in the trimeric complex. Glutamines 101 and 102 of NF-YA are required for activity. We assayed NF-Y on different promoter targets, containing single or multiple GAL4 sites: whereas on a single site NF-Y is nearly as powerful as VP16, on multiple sites neither synergistic nor additive effects are observed. NF-Y activates TATA and Inr core elements and the overall potency is in the same range as other Q-rich and Pro-rich activation domains. These results represent the first in vivo evidence of subunit interactions studies and further support the hypothesis that NF-Y is a general promoter organizer rather than a brute activator.
Full Text
The Full Text of this article is available as a PDF (449.7 KB).