Abstract
Folded structures in the DNA template, such as hairpins and multi-stranded structures, often serve as pause and arrest sites for DNA polymerases. DNA polymerization is particularly difficult on mirror-repeated homopurine.homopyrimidine templates where triple-stranded (triplex) structures may form between the nascent and folded template strands. In order to use a linear PCR amplification approach for the structural analysis of DNA in mirror-repeated sequences we modified a conventional protocol. The barrier for DNA synthesis can be eliminated using an oligonucleotide that hybridizes with the template to prevent its folding and is subsequently displaced by the progressing polymerase. The described approach is potentially useful for sequencing and analysis of chemical adducts and point mutations in a variety of sequences prone to the formation of folded structures, such as long hairpins and quadruplexes.
Full Text
The Full Text of this article is available as a PDF (428.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baran N., Lapidot A., Manor H. Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):507–511. doi: 10.1073/pnas.88.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baskaran N., Kandpal R. P., Bhargava A. K., Glynn M. W., Bale A., Weissman S. M. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 1996 Jul;6(7):633–638. doi: 10.1101/gr.6.7.633. [DOI] [PubMed] [Google Scholar]
- Bedinger P., Munn M., Alberts B. M. Sequence-specific pausing during in vitro DNA replication on double-stranded DNA templates. J Biol Chem. 1989 Oct 5;264(28):16880–16886. [PubMed] [Google Scholar]
- Brinton B. T., Caddle M. S., Heintz N. H. Position and orientation-dependent effects of a eukaryotic Z-triplex DNA motif on episomal DNA replication in COS-7 cells. J Biol Chem. 1991 Mar 15;266(8):5153–5161. [PubMed] [Google Scholar]
- Davies C. J., Hutchison C. A., 3rd Insertion site specificity of the transposon Tn3. Nucleic Acids Res. 1995 Feb 11;23(3):507–514. doi: 10.1093/nar/23.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dayn A., Samadashwily G. M., Mirkin S. M. Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11406–11410. doi: 10.1073/pnas.89.23.11406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank-Kamenetskii M. D., Mirkin S. M. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. [DOI] [PubMed] [Google Scholar]
- Htun H., Johnston B. H. Mapping adducts of DNA structural probes using transcription and primer extension approaches. Methods Enzymol. 1992;212:272–294. doi: 10.1016/0076-6879(92)12017-k. [DOI] [PubMed] [Google Scholar]
- Krasilnikov A. S., Panyutin I. G., Samadashwily G. M., Cox R., Lazurkin Y. S., Mirkin S. M. Mechanisms of triplex-caused polymerization arrest. Nucleic Acids Res. 1997 Apr 1;25(7):1339–1346. doi: 10.1093/nar/25.7.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mytelka D. S., Chamberlin M. J. Analysis and suppression of DNA polymerase pauses associated with a trinucleotide consensus. Nucleic Acids Res. 1996 Jul 15;24(14):2774–2781. doi: 10.1093/nar/24.14.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potaman V. N., Sinden R. R. Stabilization of intramolecular triple/single-strand structure by cationic peptides. Biochemistry. 1998 Sep 15;37(37):12952–12961. doi: 10.1021/bi972510k. [DOI] [PubMed] [Google Scholar]
- Potaman V. N., Sinden R. R. Stabilization of triple-helical nucleic acids by basic oligopeptides. Biochemistry. 1995 Nov 14;34(45):14885–14892. doi: 10.1021/bi00045a033. [DOI] [PubMed] [Google Scholar]
- Potaman V. N., Ussery D. W., Sinden R. R. Formation of a combined H-DNA/open TATA box structure in the promoter sequence of the human Na,K-ATPase alpha2 gene. J Biol Chem. 1996 Jun 7;271(23):13441–13447. doi: 10.1074/jbc.271.23.13441. [DOI] [PubMed] [Google Scholar]
- Sasse-Dwight S., Gralla J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J Biol Chem. 1989 May 15;264(14):8074–8081. [PubMed] [Google Scholar]
- Schroth G. P., Ho P. S. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res. 1995 Jun 11;23(11):1977–1983. doi: 10.1093/nar/23.11.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tornaletti S., Pfeifer G. P. UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J Mol Biol. 1995 Jun 16;249(4):714–728. doi: 10.1006/jmbi.1995.0331. [DOI] [PubMed] [Google Scholar]
- Ussery D. W., Hoepfner R. W., Sinden R. R. Probing DNA structure with psoralen in vitro. Methods Enzymol. 1992;212:242–262. doi: 10.1016/0076-6879(92)12015-i. [DOI] [PubMed] [Google Scholar]
- Van Raay T. J., Burn T. C., Connors T. D., Petry L. R., Germino G. G., Klinger K. W., Landes G. M. A 2.5 kb polypyrimidine tract in the PKD1 gene contains at least 23 H-DNA-forming sequences. Microb Comp Genomics. 1996;1(4):317–327. doi: 10.1089/mcg.1996.1.317. [DOI] [PubMed] [Google Scholar]
- Weitzmann M. N., Woodford K. J., Usdin K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J Biol Chem. 1996 Aug 23;271(34):20958–20964. doi: 10.1074/jbc.271.34.20958. [DOI] [PubMed] [Google Scholar]
- Wu R. Development of the primer-extension approach: a key role in DNA sequencing. Trends Biochem Sci. 1994 Oct;19(10):429–433. doi: 10.1016/0968-0004(94)90094-9. [DOI] [PubMed] [Google Scholar]
