Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):e9. doi: 10.1093/nar/27.15.e9

Improved mutation detection in GC-rich DNA fragments by combined DGGE and CDGE.

Y Wu 1, R P Stulp 1, P Elfferich 1, J Osinga 1, C H Buys 1, R M Hofstra 1
PMCID: PMC148520  PMID: 10454628

Abstract

Denaturing gradient gel electrophoresis (DGGE) has proven to be a powerful pre-screening method for the detection of DNA variants. If such variants occur, however, in DNA fragments that are very rich in G and C, they may escape detection. To overcome this limitation, we tested a novel gel system which combines DGGE and constant denaturant gel electrophoresis (CDGE), as it might have the advantages of both methods. Indeed, this combination had the advantages of both methods, good separation of hetero-duplex molecules and prevention of total strand dissociation, and it proved successful in the detection of DNA variants in several GC-rich fragments.

Full Text

The Full Text of this article is available as a PDF (214.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams E. S., Murdaugh S. E., Lerman L. S. Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp. Genomics. 1990 Aug;7(4):463–475. doi: 10.1016/0888-7543(90)90188-z. [DOI] [PubMed] [Google Scholar]
  2. Børresen A. L., Hovig E., Smith-Sørensen B., Malkin D., Lystad S., Andersen T. I., Nesland J. M., Isselbacher K. J., Friend S. H. Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8405–8409. doi: 10.1073/pnas.88.19.8405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fernandez E., Bienvenu T., Desclaux Arramond F., Beldjord K., Kaplan J. C., Beldjord C. Use of chemical clamps in denaturing gradient gel electrophoresis: application in the detection of the most frequent Mediterranean beta-thalassemic mutations. PCR Methods Appl. 1993 Oct;3(2):122–124. doi: 10.1101/gr.3.2.122. [DOI] [PubMed] [Google Scholar]
  4. Fischer S. G., Lerman L. S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1579–1583. doi: 10.1073/pnas.80.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guldberg P., Grønbak K., Aggerholm A., Platz A., thor Straten P., Ahrenkiel V., Hokland P., Zeuthen J. Detection of mutations in GC-rich DNA by bisulphite denaturing gradient gel electrophoresis. Nucleic Acids Res. 1998 Mar 15;26(6):1548–1549. doi: 10.1093/nar/26.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guldberg P., Henriksen K. F., Güttler F. Molecular analysis of phenylketonuria in Denmark: 99% of the mutations detected by denaturing gradient gel electrophoresis. Genomics. 1993 Jul;17(1):141–146. doi: 10.1006/geno.1993.1295. [DOI] [PubMed] [Google Scholar]
  7. Guldberg P., Nedergaard T., Nielsen H. J., Olsen A. C., Ahrenkiel V., Zeuthen J. Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum Mutat. 1997;9(4):348–355. doi: 10.1002/(SICI)1098-1004(1997)9:4<348::AID-HUMU8>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  8. Hofstra R. M., Sijmons R. H., Stelwagen T., Stulp R. P., Kousseff B. G., Lips C. J., Steijlen P. M., Van Voorst Vader P. C., Buys C. H. RET mutation screening in familial cutaneous lichen amyloidosis and in skin amyloidosis associated with multiple endocrine neoplasia. J Invest Dermatol. 1996 Aug;107(2):215–218. doi: 10.1111/1523-1747.ep12329651. [DOI] [PubMed] [Google Scholar]
  9. Hovig E., Smith-Sørensen B., Brøgger A., Børresen A. L. Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat Res. 1991 Jan;262(1):63–71. doi: 10.1016/0165-7992(91)90108-g. [DOI] [PubMed] [Google Scholar]
  10. Myers R. M., Maniatis T., Lerman L. S. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:501–527. doi: 10.1016/0076-6879(87)55033-9. [DOI] [PubMed] [Google Scholar]
  11. Ridanpä M., Burvall K., Zhang L. H., Husgafvel-Pursiainen K., Onfelt A. Comparison of DGGE and CDGE in detection of single base changes in the hamster hprt and human N-ras genes. Mutat Res. 1995 Jun;334(3):357–364. doi: 10.1016/0165-1161(95)90073-x. [DOI] [PubMed] [Google Scholar]
  12. Scott B. R., Pathak M. A., Mohn G. R. Molecular and genetic basis of furocoumarin reactions. Mutat Res. 1976;39(1):29–74. doi: 10.1016/0165-1110(76)90012-9. [DOI] [PubMed] [Google Scholar]
  13. Sheffield V. C., Cox D. R., Lerman L. S., Myers R. M. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A. 1989 Jan;86(1):232–236. doi: 10.1073/pnas.86.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith-Sørensen B., Hovig E., Andersson B., Børresen A. L. Screening for mutations in human HPRT cDNA using the polymerase chain reaction (PCR) in combination with constant denaturant gel electrophoresis (CDGE). Mutat Res. 1992 Sep;269(1):41–53. doi: 10.1016/0027-5107(92)90159-y. [DOI] [PubMed] [Google Scholar]
  15. Wu Y., Hayes V. M., Osinga J., Mulder I. M., Looman M. W., Buys C. H., Hofstra R. M. Improvement of fragment and primer selection for mutation detection by denaturing gradient gel electrophoresis. Nucleic Acids Res. 1998 Dec 1;26(23):5432–5440. doi: 10.1093/nar/26.23.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wu Y., Nyström-Lahti M., Osinga J., Looman M. W., Peltomäki P., Aaltonen L. A., de la Chapelle A., Hofstra R. M., Buys C. H. MSH2 and MLH1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer. 1997 Apr;18(4):269–278. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES