Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3029–3034. doi: 10.1093/nar/27.15.3029

Optimization of alternate-strand triple helix formation at the 5"-TpA-3" and 5"-ApT-3" junctions.

P Brodin 1, J S Sun 1, J F Mouscadet 1, C Auclair 1
PMCID: PMC148526  PMID: 10454596

Abstract

Alternate-strand triple helix formation was optimized at the two junction steps, the 5"-TpA-3" and 5"-ApT-3" junctions. Footprint experiments, gel retardation assays and thermal denaturation measures on a sequence appropriately designed with two adjacent alternate-strand polypurine tracts points out that the addition of an adenine residue and the removal of one nucleotide should facilitate the crossing strands at the 5"-TpA-3" junction and at the 5"-ApT-3" junction, respectively. These results provide a 'switch code' for the construction of alternate-strand triple helix forming oligonucleotides which open new possibilities for extending the range of applications of antigene strategy.

Full Text

The Full Text of this article is available as a PDF (380.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asensio J. L., Lane A. N., Dhesi J., Bergqvist S., Brown T. The contribution of cytosine protonation to the stability of parallel DNA triple helices. J Mol Biol. 1998 Feb 6;275(5):811–822. doi: 10.1006/jmbi.1997.1520. [DOI] [PubMed] [Google Scholar]
  2. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  3. Bouziane M., Cherny D. I., Mouscadet J. F., Auclair C. Alternate strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J Biol Chem. 1996 Apr 26;271(17):10359–10364. doi: 10.1074/jbc.271.17.10359. [DOI] [PubMed] [Google Scholar]
  4. Chan P. P., Glazer P. M. Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med (Berl) 1997 Apr;75(4):267–282. doi: 10.1007/s001090050112. [DOI] [PubMed] [Google Scholar]
  5. Froehler B. C., Terhorst T., Shaw J. P., McCurdy S. N. Triple-helix formation and cooperative binding by oligodeoxynucleotides with a 3'-3' internucleotide junction. Biochemistry. 1992 Feb 18;31(6):1603–1609. doi: 10.1021/bi00121a004. [DOI] [PubMed] [Google Scholar]
  6. Gowers D. M., Fox K. R. Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res. 1999 Apr 1;27(7):1569–1577. doi: 10.1093/nar/27.7.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jayasena S. D., Johnston B. H. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets. Biochemistry. 1992 Jan 21;31(2):320–327. doi: 10.1021/bi00117a002. [DOI] [PubMed] [Google Scholar]
  8. Jayasena S. D., Johnston B. H. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition. Nucleic Acids Res. 1992 Oct 25;20(20):5279–5288. doi: 10.1093/nar/20.20.5279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jayasena S. D., Johnston B. H. Sequence limitations of triple helix formation by alternate-strand recognition. Biochemistry. 1993 Mar 23;32(11):2800–2807. doi: 10.1021/bi00062a010. [DOI] [PubMed] [Google Scholar]
  10. Keppler M. D., Fox K. R. Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets. Nucleic Acids Res. 1997 Nov 15;25(22):4644–4649. doi: 10.1093/nar/25.22.4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Le Doan T., Perrouault L., Praseuth D., Habhoub N., Decout J. L., Thuong N. T., Lhomme J., Hélène C. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res. 1987 Oct 12;15(19):7749–7760. doi: 10.1093/nar/15.19.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marchand C., Sun J. S., Bailly C., Waring M. J., Garestier T., Hélène C. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps. Biochemistry. 1998 Sep 22;37(38):13322–13329. doi: 10.1021/bi980618+. [DOI] [PubMed] [Google Scholar]
  13. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  14. Neidle S. Recent developments in triple-helix regulation of gene expression. Anticancer Drug Des. 1997 Jul;12(5):433–442. [PubMed] [Google Scholar]
  15. Noonberg S. B., François J. C., Garestier T., Hélène C. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 1995 Jun 11;23(11):1956–1963. doi: 10.1093/nar/23.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olivas W. M., Maher L. J., 3rd DNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene. Biochemistry. 1994 Feb 1;33(4):983–991. doi: 10.1021/bi00170a017. [DOI] [PubMed] [Google Scholar]
  17. Ono A., Chen C. N., Kan L. S. DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry. 1991 Oct 15;30(41):9914–9912. doi: 10.1021/bi00105a015. [DOI] [PubMed] [Google Scholar]
  18. Pilch D. S., Poklar N., Gelfand C. A., Law S. M., Breslauer K. J., Baird E. E., Dervan P. B. Binding of a hairpin polyamide in the minor groove of DNA: sequence-specific enthalpic discrimination. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8306–8311. doi: 10.1073/pnas.93.16.8306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sun J. S., Garestier T., Hélène C. Oligonucleotide directed triple helix formation. Curr Opin Struct Biol. 1996 Jun;6(3):327–333. doi: 10.1016/s0959-440x(96)80051-0. [DOI] [PubMed] [Google Scholar]
  20. Svinarchuk F., Monnot M., Merle A., Malvy C., Fermandjian S. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure. Nucleic Acids Res. 1995 Oct 11;23(19):3831–3836. doi: 10.1093/nar/23.19.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vasquez K. M., Wilson J. H. Triplex-directed modification of genes and gene activity. Trends Biochem Sci. 1998 Jan;23(1):4–9. doi: 10.1016/s0968-0004(97)01158-4. [DOI] [PubMed] [Google Scholar]
  22. Washbrook E., Fox K. R. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides. Biochem J. 1994 Jul 15;301(Pt 2):569–575. doi: 10.1042/bj3010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Washbrook E., Fox K. R. Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res. 1994 Sep 25;22(19):3977–3982. doi: 10.1093/nar/22.19.3977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhou B. W., Marchand C., Asseline U., Thuong N. T., Sun J. S., Garestier T., Hélène C. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages. Bioconjug Chem. 1995 Sep-Oct;6(5):516–523. doi: 10.1021/bc00035a003. [DOI] [PubMed] [Google Scholar]
  25. de Bizemont T., Duval-Valentin G., Sun J. S., Bisagni E., Garestier T., Hélène C. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. Nucleic Acids Res. 1996 Mar 15;24(6):1136–1143. doi: 10.1093/nar/24.6.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Bizemont T., Sun J. S., Garestier T., Hélène C. New junction models for alternate-strand triple-helix formation. Chem Biol. 1998 Dec;5(12):755–762. doi: 10.1016/s1074-5521(98)90667-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES