Abstract
Alternate-strand triple helix formation was optimized at the two junction steps, the 5"-TpA-3" and 5"-ApT-3" junctions. Footprint experiments, gel retardation assays and thermal denaturation measures on a sequence appropriately designed with two adjacent alternate-strand polypurine tracts points out that the addition of an adenine residue and the removal of one nucleotide should facilitate the crossing strands at the 5"-TpA-3" junction and at the 5"-ApT-3" junction, respectively. These results provide a 'switch code' for the construction of alternate-strand triple helix forming oligonucleotides which open new possibilities for extending the range of applications of antigene strategy.
Full Text
The Full Text of this article is available as a PDF (380.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asensio J. L., Lane A. N., Dhesi J., Bergqvist S., Brown T. The contribution of cytosine protonation to the stability of parallel DNA triple helices. J Mol Biol. 1998 Feb 6;275(5):811–822. doi: 10.1006/jmbi.1997.1520. [DOI] [PubMed] [Google Scholar]
- Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
- Bouziane M., Cherny D. I., Mouscadet J. F., Auclair C. Alternate strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J Biol Chem. 1996 Apr 26;271(17):10359–10364. doi: 10.1074/jbc.271.17.10359. [DOI] [PubMed] [Google Scholar]
- Chan P. P., Glazer P. M. Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med (Berl) 1997 Apr;75(4):267–282. doi: 10.1007/s001090050112. [DOI] [PubMed] [Google Scholar]
- Froehler B. C., Terhorst T., Shaw J. P., McCurdy S. N. Triple-helix formation and cooperative binding by oligodeoxynucleotides with a 3'-3' internucleotide junction. Biochemistry. 1992 Feb 18;31(6):1603–1609. doi: 10.1021/bi00121a004. [DOI] [PubMed] [Google Scholar]
- Gowers D. M., Fox K. R. Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res. 1999 Apr 1;27(7):1569–1577. doi: 10.1093/nar/27.7.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayasena S. D., Johnston B. H. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets. Biochemistry. 1992 Jan 21;31(2):320–327. doi: 10.1021/bi00117a002. [DOI] [PubMed] [Google Scholar]
- Jayasena S. D., Johnston B. H. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition. Nucleic Acids Res. 1992 Oct 25;20(20):5279–5288. doi: 10.1093/nar/20.20.5279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayasena S. D., Johnston B. H. Sequence limitations of triple helix formation by alternate-strand recognition. Biochemistry. 1993 Mar 23;32(11):2800–2807. doi: 10.1021/bi00062a010. [DOI] [PubMed] [Google Scholar]
- Keppler M. D., Fox K. R. Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets. Nucleic Acids Res. 1997 Nov 15;25(22):4644–4649. doi: 10.1093/nar/25.22.4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Doan T., Perrouault L., Praseuth D., Habhoub N., Decout J. L., Thuong N. T., Lhomme J., Hélène C. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res. 1987 Oct 12;15(19):7749–7760. doi: 10.1093/nar/15.19.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchand C., Sun J. S., Bailly C., Waring M. J., Garestier T., Hélène C. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps. Biochemistry. 1998 Sep 22;37(38):13322–13329. doi: 10.1021/bi980618+. [DOI] [PubMed] [Google Scholar]
- Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
- Neidle S. Recent developments in triple-helix regulation of gene expression. Anticancer Drug Des. 1997 Jul;12(5):433–442. [PubMed] [Google Scholar]
- Noonberg S. B., François J. C., Garestier T., Hélène C. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 1995 Jun 11;23(11):1956–1963. doi: 10.1093/nar/23.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivas W. M., Maher L. J., 3rd DNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene. Biochemistry. 1994 Feb 1;33(4):983–991. doi: 10.1021/bi00170a017. [DOI] [PubMed] [Google Scholar]
- Ono A., Chen C. N., Kan L. S. DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry. 1991 Oct 15;30(41):9914–9912. doi: 10.1021/bi00105a015. [DOI] [PubMed] [Google Scholar]
- Pilch D. S., Poklar N., Gelfand C. A., Law S. M., Breslauer K. J., Baird E. E., Dervan P. B. Binding of a hairpin polyamide in the minor groove of DNA: sequence-specific enthalpic discrimination. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8306–8311. doi: 10.1073/pnas.93.16.8306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J. S., Garestier T., Hélène C. Oligonucleotide directed triple helix formation. Curr Opin Struct Biol. 1996 Jun;6(3):327–333. doi: 10.1016/s0959-440x(96)80051-0. [DOI] [PubMed] [Google Scholar]
- Svinarchuk F., Monnot M., Merle A., Malvy C., Fermandjian S. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure. Nucleic Acids Res. 1995 Oct 11;23(19):3831–3836. doi: 10.1093/nar/23.19.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vasquez K. M., Wilson J. H. Triplex-directed modification of genes and gene activity. Trends Biochem Sci. 1998 Jan;23(1):4–9. doi: 10.1016/s0968-0004(97)01158-4. [DOI] [PubMed] [Google Scholar]
- Washbrook E., Fox K. R. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides. Biochem J. 1994 Jul 15;301(Pt 2):569–575. doi: 10.1042/bj3010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Washbrook E., Fox K. R. Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res. 1994 Sep 25;22(19):3977–3982. doi: 10.1093/nar/22.19.3977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou B. W., Marchand C., Asseline U., Thuong N. T., Sun J. S., Garestier T., Hélène C. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages. Bioconjug Chem. 1995 Sep-Oct;6(5):516–523. doi: 10.1021/bc00035a003. [DOI] [PubMed] [Google Scholar]
- de Bizemont T., Duval-Valentin G., Sun J. S., Bisagni E., Garestier T., Hélène C. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. Nucleic Acids Res. 1996 Mar 15;24(6):1136–1143. doi: 10.1093/nar/24.6.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Bizemont T., Sun J. S., Garestier T., Hélène C. New junction models for alternate-strand triple-helix formation. Chem Biol. 1998 Dec;5(12):755–762. doi: 10.1016/s1074-5521(98)90667-6. [DOI] [PubMed] [Google Scholar]