Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3035–3041. doi: 10.1093/nar/27.15.3035

Oligonucleotide dendrimers: stable nano-structures.

M S Shchepinov 1, K U Mir 1, J K Elder 1, M D Frank-Kamenetskii 1, E M Southern 1
PMCID: PMC148527  PMID: 10454597

Abstract

DNA dendrimers with two, three, six, nine or 27 arms were reassociated as complementary pairs in solution or with an array of complementary oligonucleotides on a solid support. In all cases, duplex stabilities were greater than those of unbranched molecules of equal length. A theoretical treatment for the process of dissociation of dendrimers explains the major properties of the complexes. The favourable features of DNA dendrimers-their enhanced stability and the simple predictability of their association behaviour-makes them promising as building blocks for the 'bottom up' approach to nano-assembly. These features also suggest applications in oligonucleotide array/DNA chip technology when higher hybridisation temperatures are required, for example, to melt secon-dary structure in the target.

Full Text

The Full Text of this article is available as a PDF (989.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alivisatos A. P., Johnsson K. P., Peng X., Wilson T. E., Loweth C. J., Bruchez M. P., Jr, Schultz P. G. Organization of 'nanocrystal molecules' using DNA. Nature. 1996 Aug 15;382(6592):609–611. doi: 10.1038/382609a0. [DOI] [PubMed] [Google Scholar]
  2. Anshelevich V. V., Vologodskii A. V., Lukashin A. V., Frank-Kamenetskii M. D. Slow relaxational processes in the melting of linear biopolymers: a theory and its application to nucleic acids. Biopolymers. 1984 Jan;23(1):39–58. doi: 10.1002/bip.360230105. [DOI] [PubMed] [Google Scholar]
  3. Elghanian R., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997 Aug 22;277(5329):1078–1081. doi: 10.1126/science.277.5329.1078. [DOI] [PubMed] [Google Scholar]
  4. Matson R. S., Rampal J. B., Coassin P. J. Biopolymer synthesis on polypropylene supports. I. Oligonucleotides. Anal Biochem. 1994 Mar;217(2):306–310. doi: 10.1006/abio.1994.1123. [DOI] [PubMed] [Google Scholar]
  5. Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996 Aug 15;382(6592):607–609. doi: 10.1038/382607a0. [DOI] [PubMed] [Google Scholar]
  6. Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor S. P. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5022–5026. doi: 10.1073/pnas.91.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pirrung Michael C. Spatially Addressable Combinatorial Libraries. Chem Rev. 1997 Apr 1;97(2):473–488. doi: 10.1021/cr960013o. [DOI] [PubMed] [Google Scholar]
  8. Seeman N. C. DNA nanotechnology: novel DNA constructions. Annu Rev Biophys Biomol Struct. 1998;27:225–248. doi: 10.1146/annurev.biophys.27.1.225. [DOI] [PubMed] [Google Scholar]
  9. Shchepinov M. S., Udalova I. A., Bridgman A. J., Southern E. M. Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acids Res. 1997 Nov 15;25(22):4447–4454. doi: 10.1093/nar/25.22.4447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Southern E. M., Case-Green S. C., Elder J. K., Johnson M., Mir K. U., Wang L., Williams J. C. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 1994 Apr 25;22(8):1368–1373. doi: 10.1093/nar/22.8.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Southern E. M., Maskos U., Elder J. K. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. 1992 Aug;13(4):1008–1017. doi: 10.1016/0888-7543(92)90014-j. [DOI] [PubMed] [Google Scholar]
  12. Southern E. M., Maskos U. Parallel synthesis and analysis of large numbers of related chemical compounds: applications to oligonucleotides. J Biotechnol. 1994 Jun 30;35(2-3):217–227. doi: 10.1016/0168-1656(94)90037-x. [DOI] [PubMed] [Google Scholar]
  13. Whitesides G. M., Mathias J. P., Seto C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991 Nov 29;254(5036):1312–1319. doi: 10.1126/science.1962191. [DOI] [PubMed] [Google Scholar]
  14. Winfree E., Liu F., Wenzler L. A., Seeman N. C. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998 Aug 6;394(6693):539–544. doi: 10.1038/28998. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES