Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3096–3103. doi: 10.1093/nar/27.15.3096

Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.

S Kanno 1, S Iwai 1, M Takao 1, A Yasui 1
PMCID: PMC148535  PMID: 10454605

Abstract

UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.

Full Text

The Full Text of this article is available as a PDF (386.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aravind L., Walker D. R., Koonin E. V. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 1999 Mar 1;27(5):1223–1242. doi: 10.1093/nar/27.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman K. K., Sidik K., Smith C. A., Taylor J. S., Doetsch P. W., Freyer G. A. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res. 1994 Aug 11;22(15):3026–3032. doi: 10.1093/nar/22.15.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clingen P. H., Arlett C. F., Roza L., Mori T., Nikaido O., Green M. H. Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells. Cancer Res. 1995 Jun 1;55(11):2245–2248. [PubMed] [Google Scholar]
  4. Hanawalt P. C. Repair of genetic material in living cells. Endeavour. 1972 May;31(113):83–87. [PubMed] [Google Scholar]
  5. Ishii C., Nakamura K., Inoue H. A novel phenotype of an excision-repair mutant in Neurospora crassa: mutagen sensitivity of the mus-18 mutant is specific to UV. Mol Gen Genet. 1991 Aug;228(1-2):33–39. doi: 10.1007/BF00282444. [DOI] [PubMed] [Google Scholar]
  6. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kobayashi K., Kanno S., Smit B., van der Horst G. T., Takao M., Yasui A. Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res. 1998 Nov 15;26(22):5086–5092. doi: 10.1093/nar/26.22.5086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matsumoto Y., Kim K., Bogenhagen D. F. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol. 1994 Sep;14(9):6187–6197. doi: 10.1128/mcb.14.9.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murata T., Iwai S., Ohtsuka E. Synthesis and characterization of a substrate for T4 endonuclease V containing a phosphorodithioate linkage at the thymine dimer site. Nucleic Acids Res. 1990 Dec 25;18(24):7279–7286. doi: 10.1093/nar/18.24.7279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ramotar D., Vadnais J., Masson J. Y., Tremblay S. Schizosaccharomyces pombe apn1 encodes a homologue of the Escherichia coli endonuclease IV family of DNA repair proteins. Biochim Biophys Acta. 1998 Mar 4;1396(1):15–20. doi: 10.1016/s0167-4781(97)00160-7. [DOI] [PubMed] [Google Scholar]
  11. Reardon J. T., Nichols A. F., Keeney S., Smith C. A., Taylor J. S., Linn S., Sancar A. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993 Oct 5;268(28):21301–21308. [PubMed] [Google Scholar]
  12. Robson C. N., Hickson I. D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991 Oct 25;19(20):5519–5523. doi: 10.1093/nar/19.20.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  14. Suh D., Wilson D. M., 3rd, Povirk L. F. 3'-phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Nucleic Acids Res. 1997 Jun 15;25(12):2495–2500. doi: 10.1093/nar/25.12.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takao M., Yonemasu R., Yamamoto K., Yasui A. Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog. Nucleic Acids Res. 1996 Apr 1;24(7):1267–1271. doi: 10.1093/nar/24.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takeuchi M., Lillis R., Demple B., Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J Biol Chem. 1994 Aug 26;269(34):21907–21914. [PubMed] [Google Scholar]
  17. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  18. Wilson D. M., 3rd, Takeshita M., Grollman A. P., Demple B. Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J Biol Chem. 1995 Jul 7;270(27):16002–16007. doi: 10.1074/jbc.270.27.16002. [DOI] [PubMed] [Google Scholar]
  19. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  20. Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yasui A., McCready S. J. Alternative repair pathways for UV-induced DNA damage. Bioessays. 1998 Apr;20(4):291–297. doi: 10.1002/(SICI)1521-1878(199804)20:4<291::AID-BIES5>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  22. Yonemasu R., McCready S. J., Murray J. M., Osman F., Takao M., Yamamoto K., Lehmann A. R., Yasui A. Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. Nucleic Acids Res. 1997 Apr 15;25(8):1553–1558. doi: 10.1093/nar/25.8.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yoon J. H., Swiderski P. M., Kaplan B. E., Takao M., Yasui A., Shen B., Pfeifer G. P. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry. 1999 Apr 13;38(15):4809–4817. doi: 10.1021/bi990105i. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES