Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3104–3110. doi: 10.1093/nar/27.15.3104

Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.

J Wöhnert 1, A J Dingley 1, M Stoldt 1, M Görlach 1, S Grzesiek 1, L R Brown 1
PMCID: PMC148536  PMID: 10454606

Abstract

It is shown that the recently developed quantitative J(NN)HNN-COSY experiment can be used for the direct identification of hydrogen bonds in non-canonical base pairs in RNA. Scalar(2h)J(NN)couplings across NH.N hydrogen bonds are observed in imino hydrogen bonded GA base pairs of the hpGA RNA molecule, which contains a tandem GA mismatch, and in the reverse Hoogsteen AU base pairs of the E-loop of Escherichia coli 5S rRNA. These scalar couplings correlate the imino donor(15)N nucleus of guanine or uridine with the acceptor N1 or N7 nucleus of adenine. The values of the corresponding(2h)J(NN)coupling constants are similar in size to those observed in Watson-Crick base pairs. The reverse Hoogsteen base pairs could be directly detected for the E-loop of E.coli 5S rRNA both in the free form and in a complex with the ribosomal protein L25. This supports the notion that the E-loop is a pre-folded RNA recognition site that is not subject to significant induced conformational changes. Since Watson-Crick GC and AU base pairs are also readily detected the HNN-COSY experiment provides a useful and sensitive tool for the rapid identification of RNA secondary structure elements.

Full Text

The Full Text of this article is available as a PDF (508.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
  3. Conn G. L., Draper D. E. RNA structure. Curr Opin Struct Biol. 1998 Jun;8(3):278–285. doi: 10.1016/s0959-440x(98)80059-6. [DOI] [PubMed] [Google Scholar]
  4. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  5. Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
  6. Dallas A., Rycyna R., Moore P. A proposal for the conformation of loop E in Escherichia coli 5S rRNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):887–897. doi: 10.1139/o95-096. [DOI] [PubMed] [Google Scholar]
  7. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  8. Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
  9. Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
  10. Grüne M., Görlach M., Soskic V., Klussmann S., Bald R., Fürste J. P., Erdmann V. A., Brown L. R. Initial analysis of 750 MHz NMR spectra of selective 15N-G,U labelled E. coli 5S rRNA. FEBS Lett. 1996 Apr 29;385(1-2):114–118. doi: 10.1016/0014-5793(96)00361-4. [DOI] [PubMed] [Google Scholar]
  11. Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
  12. Jiang L., Patel D. J. Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol. 1998 Sep;5(9):769–774. doi: 10.1038/1804. [DOI] [PubMed] [Google Scholar]
  13. Leonard G. A., McAuley-Hecht K. E., Ebel S., Lough D. M., Brown T., Hunter W. N. Crystal and molecular structure of r(CGCGAAUUAGCG): an RNA duplex containing two G(anti).A(anti) base pairs. Structure. 1994 Jun 15;2(6):483–494. doi: 10.1016/S0969-2126(00)00049-6. [DOI] [PubMed] [Google Scholar]
  14. Leontis N. B., Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol. 1998 Oct 30;283(3):571–583. doi: 10.1006/jmbi.1998.2106. [DOI] [PubMed] [Google Scholar]
  15. Michnicka M. J., Harper J. W., King G. C. Selective isotopic enrichment of synthetic RNA: application to the HIV-1 TAR element. Biochemistry. 1993 Jan 19;32(2):395–400. doi: 10.1021/bi00053a002. [DOI] [PubMed] [Google Scholar]
  16. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pervushin K., Ono A., Fernández C., Szyperski T., Kainosho M., Wüthrich K. NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14147–14151. doi: 10.1073/pnas.95.24.14147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peterson R. D., Feigon J. Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide. J Mol Biol. 1996 Dec 20;264(5):863–877. doi: 10.1006/jmbi.1996.0683. [DOI] [PubMed] [Google Scholar]
  19. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  20. Shen L. X., Cai Z., Tinoco I., Jr RNA structure at high resolution. FASEB J. 1995 Aug;9(11):1023–1033. doi: 10.1096/fasebj.9.11.7544309. [DOI] [PubMed] [Google Scholar]
  21. Sklenár V., Peterson R. D., Rejante M. R., Feigon J. Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments. J Biomol NMR. 1994 Jan;4(1):117–122. doi: 10.1007/BF00178339. [DOI] [PubMed] [Google Scholar]
  22. Stoldt M., Wöhnert J., Görlach M., Brown L. R. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. EMBO J. 1998 Nov 2;17(21):6377–6384. doi: 10.1093/emboj/17.21.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tang R. S., Draper D. E. Bend and helical twist associated with a symmetric internal loop from 5S ribosomal RNA. Biochemistry. 1994 Aug 23;33(33):10089–10093. doi: 10.1021/bi00199a036. [DOI] [PubMed] [Google Scholar]
  24. Wimberly B. A common RNA loop motif as a docking module and its function in the hammerhead ribozyme. Nat Struct Biol. 1994 Nov;1(11):820–827. doi: 10.1038/nsb1194-820. [DOI] [PubMed] [Google Scholar]
  25. Wu M., SantaLucia J., Jr, Turner D. H. Solution structure of (rGGCAGGCC)2 by two-dimensional NMR and the iterative relaxation matrix approach. Biochemistry. 1997 Apr 15;36(15):4449–4460. doi: 10.1021/bi9625915. [DOI] [PubMed] [Google Scholar]
  26. Ye X., Gorin A., Ellington A. D., Patel D. J. Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat Struct Biol. 1996 Dec;3(12):1026–1033. doi: 10.1038/nsb1296-1026. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES