Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3111–3119. doi: 10.1093/nar/27.15.3111

Post-transcriptional regulation of the DNA damage-inducible gadd45 gene in human breast carcinoma cells exposed to a novel retinoid CD437.

A K Rishi 1, R J Sun 1, Y Gao 1, C K Hsu 1, T M Gerald 1, M Saeed Sheikh 1, M I Dawson 1, U Reichert 1, B Shroot 1, A J Fornace Jr 1, G Brewer 1, J A Fontana 1
PMCID: PMC148537  PMID: 10454607

Abstract

The biologically active synthetic retinoid CD437 (6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene, AHPN) and different human breast carcinoma (HBC) cell lines were used to examine the possible mechanism(s) of gadd45 induction. Northern blot analysis of mRNA isolated from MCF-7, MDA-MB-468 and MDA-MB-231 HBC cell lines demonstrated a progressive increase in the 1.4 kb gadd45 transcript after exposure to 1 microM CD437. Western blot analysis showed increased gadd45 protein levels in MDA-MB-468 HBC cells following exposure to CD437. CD437 increased gadd45 mRNA levels by approximately 20-fold in MDA-MB-468 cells, however, the transcriptional activity was increased approximately 2-3-fold as demonstrated by the human gadd45 promoter-luciferase reporter construct and nuclear run-off assays. Sublines of MDA-MB-468 HBC cells expressing stably integrated GADD45 cDNA fragments were obtained and CD437-dependent induction of GADD45 analyzed. We report that approximately 300 nt located in the 5"-untranslated region (5"-UTR) of gadd45 mRNA are involved in the CD437-dependent 4-fold enhanced stability of gadd45 transcripts. MDA-MB-468 cells were stably transfected with either a plasmid having a CMV promoter-driven rabbit beta-globin gene or plasmids having a CMV promoter-driven chimeric gadd45 5"-UTR-rabbit beta-globin gene, where the entire gadd45 5"-UTR (from +1 to +298) or a 45 bp subfragment of the gadd45 5"-UTR (from +10 to +55) was positioned at the 5"-end of the rabbit beta-globin gene. CD437 was found to up-regulate expression of both the chimeric gadd45 -rabbit beta-globin transcripts, suggesting that cis element(s) involved in the CD437-dependent enhanced stability of gadd45 mRNA are contained in the 45 nt of the 5"-UTR of the gadd45 mRNA.

Full Text

The Full Text of this article is available as a PDF (397.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharon T., Schneider R. J. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage colony-stimulating factor AU-rich 3' noncoding region is mediated by a cotranslational mechanism. Mol Cell Biol. 1993 Mar;13(3):1971–1980. doi: 10.1128/mcb.13.3.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brewer G. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol. 1991 May;11(5):2460–2466. doi: 10.1128/mcb.11.5.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Celano P., Berchtold C., Casero R. A., Jr A simplification of the nuclear run-off transcription assay. Biotechniques. 1989 Oct;7(9):942–944. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Fornace A. J., Jr, Alamo I., Jr, Hollander M. C. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8800–8804. doi: 10.1073/pnas.85.23.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fornace A. J., Jr, Jackman J., Hollander M. C., Hoffman-Liebermann B., Liebermann D. A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann N Y Acad Sci. 1992 Nov 21;663:139–153. doi: 10.1111/j.1749-6632.1992.tb38657.x. [DOI] [PubMed] [Google Scholar]
  7. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall P. A., Kearsey J. M., Coates P. J., Norman D. G., Warbrick E., Cox L. S. Characterisation of the interaction between PCNA and Gadd45. Oncogene. 1995 Jun 15;10(12):2427–2433. [PubMed] [Google Scholar]
  9. Hollander M. C., Alamo I., Jackman J., Wang M. G., McBride O. W., Fornace A. J., Jr Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem. 1993 Nov 15;268(32):24385–24393. [PubMed] [Google Scholar]
  10. Hsu C. A., Rishi A. K., Su-Li X., Gerald T. M., Dawson M. I., Schiffer C., Reichert U., Shroot B., Poirer G. C., Fontana J. A. Retinoid induced apoptosis in leukemia cells through a retinoic acid nuclear receptor-independent pathway. Blood. 1997 Jun 15;89(12):4470–4479. [PubMed] [Google Scholar]
  11. Jackman J., Alamo I., Jr, Fornace A. J., Jr Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res. 1994 Nov 1;54(21):5656–5662. [PubMed] [Google Scholar]
  12. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  13. Li X. S., Rishi A. K., Shao Z. M., Dawson M. I., Jong L., Shroot B., Reichert U., Ordonez J., Fontana J. A. Posttranscriptional regulation of p21WAF1/CIP1 expression in human breast carcinoma cells. Cancer Res. 1996 Nov 1;56(21):5055–5062. [PubMed] [Google Scholar]
  14. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Margot J. B., Demers G. W., Hardison R. C. Complete nucleotide sequence of the rabbit beta-like globin gene cluster. Analysis of intergenic sequences and comparison with the human beta-like globin gene cluster. J Mol Biol. 1989 Jan 5;205(1):15–40. doi: 10.1016/0022-2836(89)90362-8. [DOI] [PubMed] [Google Scholar]
  16. Papathanasiou M. A., Kerr N. C., Robbins J. H., McBride O. W., Alamo I., Jr, Barrett S. F., Hickson I. D., Fornace A. J., Jr Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol. 1991 Feb;11(2):1009–1016. doi: 10.1128/mcb.11.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rishi A., Hatzis D., McAlmon K., Floros J. An allelic variant of the 6A gene for human surfactant protein A. Am J Physiol. 1992 May;262(5 Pt 1):L566–L573. doi: 10.1152/ajplung.1992.262.5.L566. [DOI] [PubMed] [Google Scholar]
  18. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakaue M., Adachi H., Jetten A. M. Post-transcriptional regulation of MyD118 and GADD45 in human lung carcinoma cells during 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2- naphthalene carboxylic acid-induced apoptosis. Mol Pharmacol. 1999 Apr;55(4):668–676. [PubMed] [Google Scholar]
  20. Shao Z. M., Dawson M. I., Li X. S., Rishi A. K., Sheikh M. S., Han Q. X., Ordonez J. V., Shroot B., Fontana J. A. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene. 1995 Aug 3;11(3):493–504. [PubMed] [Google Scholar]
  21. Shyu A. B., Belasco J. G., Greenberg M. E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. doi: 10.1101/gad.5.2.221. [DOI] [PubMed] [Google Scholar]
  22. Takekawa M., Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998 Nov 13;95(4):521–530. doi: 10.1016/s0092-8674(00)81619-0. [DOI] [PubMed] [Google Scholar]
  23. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhan Q., Lord K. A., Alamo I., Jr, Hollander M. C., Carrier F., Ron D., Kohn K. W., Hoffman B., Liebermann D. A., Fornace A. J., Jr The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol. 1994 Apr;14(4):2361–2371. doi: 10.1128/mcb.14.4.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES