Abstract
The cDNA encoding p43, a DNA binding protein from pea chloroplasts (ct) that binds to cognate DNA polymerase and stimulates the polymerase activity, has been cloned and characterised. The characteristic sequence motifs of hydroxyproline-rich glyco-proteins (HRGP) are present in the cDNA corres-ponding to the N-terminal domain of the mature p43. The protein was found to be highly O-arabinosylated. Chemically deglycosylated p43 (i.e. p29) retains its binding to both DNA and pea ct-DNA polymerase but fails to stimulate the DNA polymerase activity. The mature p43 is synthesised as a pre-p43 protein containing a 59 amino acid long transit peptide which undergoes stromal cleavage as evidenced from the post-translational in vitro import of the precursor protein into the isolated intact pea chloroplasts. Surprisingly, p43 is found only in pea chloroplasts. The unique features present in the cloned cDNA indicate that p43 is a novel member of the HRGP family of proteins. Besides p43, no other DNA-polymerase accessory protein with O-glycosylation has been reported yet.
Full Text
The Full Text of this article is available as a PDF (449.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brownleader M. D., Dey P. M. Purification of extensin from cell walls of tomato (hybrid of Lycopersicon esculentum and L. peruvianum) cells in suspension culture. Planta. 1993;191(4):457–469. doi: 10.1007/BF00195747. [DOI] [PubMed] [Google Scholar]
- Burton S. K., Van 't Ho J., Bryant J. A. Novel DNA-binding characteristics of a protein associated with DNA polymerase-alpha in pea. Plant J. 1997 Aug;12(2):357–365. doi: 10.1046/j.1365-313x.1997.12020357.x. [DOI] [PubMed] [Google Scholar]
- Chen C. G., Pu Z. Y., Moritz R. L., Simpson R. J., Bacic A., Clarke A. E., Mau S. L. Molecular cloning of a gene encoding an arabinogalactan-protein from pear (Pyrus communis) cell suspension culture. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10305–10309. doi: 10.1073/pnas.91.22.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Q., Osteryoung K., Vierling E. A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in Organelle. J Biol Chem. 1994 May 6;269(18):13216–13223. [PubMed] [Google Scholar]
- Chen W., Gaikwad A., Mukherjee S. K., Choudhary N. R., Kumar D., Tewari K. K. A 43 kDa DNA binding protein from the pea chloroplast interacts with and stimulates the cognate DNA polymerase. Nucleic Acids Res. 1996 Oct 15;24(20):3953–3961. doi: 10.1093/nar/24.20.3953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekker J., Kanellopoulos P. N., Loonstra A. K., van Oosterhout J. A., Leonard K., Tucker P. A., van der Vliet P. C. Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J. 1997 Mar 17;16(6):1455–1463. doi: 10.1093/emboj/16.6.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desai N. N., Allen A. K., Neuberger A. The properties of potato (Solanum tuberosum) lectin after deglycosylation by trifluoromethanesulphonic acid. Biochem J. 1983 Apr 1;211(1):273–276. doi: 10.1042/bj2110273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodds P. N., Clarke A. E., Newbigin E. Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Mol Biol. 1996 May;31(2):227–238. doi: 10.1007/BF00021786. [DOI] [PubMed] [Google Scholar]
- Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
- Gascuel O., Golmard J. L. A simple method for predicting the secondary structure of globular proteins: implications and accuracy. Comput Appl Biosci. 1988 Aug;4(3):357–365. doi: 10.1093/bioinformatics/4.3.357. [DOI] [PubMed] [Google Scholar]
- Grünert S., Jackson R. J. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 1994 Aug 1;13(15):3618–3630. doi: 10.1002/j.1460-2075.1994.tb06669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez T. R., Lehman I. R. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J Biol Chem. 1990 Jul 5;265(19):11227–11232. [PubMed] [Google Scholar]
- Hernández P., Martín-Parras L., Martínez-Robles M. L., Schvartzman J. B. Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J. 1993 Apr;12(4):1475–1485. doi: 10.1002/j.1460-2075.1993.tb05791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong J. C., Cheong Y. H., Nagao R. T., Bahk J. D., Cho M. J., Key J. L. Isolation and characterization of three soybean extensin cDNAs. Plant Physiol. 1994 Feb;104(2):793–796. doi: 10.1104/pp.104.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kardailsky I. V., Sherrier D. J., Brewin N. J. Identification of a new pea gene, PsNlec1, encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules. Plant Physiol. 1996 May;111(1):49–60. doi: 10.1104/pp.111.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann H., Salamini F., Thompson R. D. Sequence variability and gene structure at the self-incompatibility locus of Solanum tuberosum. Mol Gen Genet. 1991 May;226(3):457–466. doi: 10.1007/BF00260659. [DOI] [PubMed] [Google Scholar]
- Kieliszewski M. J., Lamport D. T. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 1994 Feb;5(2):157–172. doi: 10.1046/j.1365-313x.1994.05020157.x. [DOI] [PubMed] [Google Scholar]
- Kieliszewski M. J., O'Neill M., Leykam J., Orlando R. Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. J Biol Chem. 1995 Feb 10;270(6):2541–2549. doi: 10.1074/jbc.270.6.2541. [DOI] [PubMed] [Google Scholar]
- Kieliszewski M. J., Showalter A. M., Leykam J. F. Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J. 1994 Jun;5(6):849–861. doi: 10.1046/j.1365-313x.1994.5060849.x. [DOI] [PubMed] [Google Scholar]
- Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem. 1992 Oct 15;209(2):483–501. doi: 10.1111/j.1432-1033.1992.tb17313.x. [DOI] [PubMed] [Google Scholar]
- Kouranov A., Schnell D. J. Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem. 1996 Dec 6;271(49):31009–31012. doi: 10.1074/jbc.271.49.31009. [DOI] [PubMed] [Google Scholar]
- Kreuger M., van Holst G. J. Arabinogalactan proteins and plant differentiation. Plant Mol Biol. 1996 Mar;30(6):1077–1086. doi: 10.1007/BF00019543. [DOI] [PubMed] [Google Scholar]
- Lin Q., Ma L., Burkhart W., Spremulli L. L. Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. J Biol Chem. 1994 Apr 1;269(13):9436–9444. [PubMed] [Google Scholar]
- Lis H., Sharon N. Protein glycosylation. Structural and functional aspects. Eur J Biochem. 1993 Nov 15;218(1):1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x. [DOI] [PubMed] [Google Scholar]
- Moody S. F., Handman E., McConville M. J., Bacic A. The structure of Leishmania major amastigote lipophosphoglycan. J Biol Chem. 1993 Sep 5;268(25):18457–18466. [PubMed] [Google Scholar]
- Mukherjee S. K., Reddy M. K., Kumar D., Tewari K. K. Purification and characterization of a eukaryotic type 1 topoisomerase from pea chloroplast. J Biol Chem. 1994 Feb 4;269(5):3793–3801. [PubMed] [Google Scholar]
- Onrust R., Finkelstein J., Naktinis V., Turner J., Fang L., O'Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem. 1995 Jun 2;270(22):13348–13357. doi: 10.1074/jbc.270.22.13348. [DOI] [PubMed] [Google Scholar]
- Parmentier Y., Durr A., Marbach J., Hirsinger C., Criqui M. C., Fleck J., Jamet E. A novel wound-inducible extensin gene is expressed early in newly isolated protoplasts of Nicotiana sylvestris. Plant Mol Biol. 1995 Oct;29(2):279–292. doi: 10.1007/BF00043652. [DOI] [PubMed] [Google Scholar]
- Reddy M. K., Choudhury N. R., Kumar D., Mukherjee S. K., Tewari K. K. Characterisation and mode of in vitro replication of pea chloroplast OriA sequences. Eur J Biochem. 1994 Mar 15;220(3):933–941. doi: 10.1111/j.1432-1033.1994.tb18697.x. [DOI] [PubMed] [Google Scholar]
- Rini J. M. Lectin structure. Annu Rev Biophys Biomol Struct. 1995;24:551–577. doi: 10.1146/annurev.bb.24.060195.003003. [DOI] [PubMed] [Google Scholar]
- Rubinstein A. L., Marquez J., Suarez-Cervera M., Bedinger P. A. Extensin-like Glycoproteins in the Maize Pollen Tube Wall. Plant Cell. 1995 Dec;7(12):2211–2225. doi: 10.1105/tpc.7.12.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheng J., Jeong J., Mehdy M. C. Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich protein, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):828–832. doi: 10.1073/pnas.90.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sticher L., Hofsteenge J., Milani A., Neuhaus J. M., Meins F., Jr Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins. Science. 1992 Jul 31;257(5070):655–657. doi: 10.1126/science.1496378. [DOI] [PubMed] [Google Scholar]
- Tranel P. J., Froehlich J., Goyal A., Keegstra K. A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J. 1995 Jun 1;14(11):2436–2446. doi: 10.1002/j.1460-2075.1995.tb07241.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Broeck G., Timko M. P., Kausch A. P., Cashmore A. R., Van Montagu M., Herrera-Estrella L. Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. 1985 Jan 31-Feb 6Nature. 313(6001):358–363. doi: 10.1038/313358a0. [DOI] [PubMed] [Google Scholar]
- Williams A. J., Kaguni L. S. Stimulation of Drosophila mitochondrial DNA polymerase by single-stranded DNA-binding protein. J Biol Chem. 1995 Jan 13;270(2):860–865. doi: 10.1074/jbc.270.2.860. [DOI] [PubMed] [Google Scholar]
- Wu D. Y., Ugozzoli L., Pal B. K., Qian J., Wallace R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 1991 Apr;10(3):233–238. doi: 10.1089/dna.1991.10.233. [DOI] [PubMed] [Google Scholar]
- von Heijne G., Nishikawa K. Chloroplast transit peptides. The perfect random coil? FEBS Lett. 1991 Jan 14;278(1):1–3. doi: 10.1016/0014-5793(91)80069-f. [DOI] [PubMed] [Google Scholar]
- von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]