Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3153–3158. doi: 10.1093/nar/27.15.3153

Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells.

L J Lipinski 1, N Hoehr 1, S J Mazur 1, G L Dianov 1, S Sentürker 1, M Dizdaroglu 1, V A Bohr 1
PMCID: PMC148542  PMID: 10454612

Abstract

Fluorescent light (FL) has been shown to generate free radicals within cells, however, the specific chemical nature of DNA damage induced by FL has not previously been determined. Using gas chromatography/isotope dilution mass spectrometry, we have detected induction of the oxidative DNA lesions 5-hydroxycytosine (5-OH-Cyt), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde) in cultured cells irradiated with FL. We followed the repair of these lesions in normal and xeroderma pigmentosum group A (XP-A) cells. 5-OH-Cyt and FapyGua were repaired efficiently in normal cells within 6 h following FL exposure. XP-A cells were unable to repair these oxidative DNA base lesions. Additionally, to compare the repair of oxidative lesions induced by various sources, in vitro repair studies were performed using plasmid DNA damaged by FL, gamma-irradiation or OsO(4)treatment. Whole cell extracts from normal cells repaired damaged substrates efficiently, whereas there was little repair in XP-A extracts. Our data demon-strate defective repair of oxidative DNA base lesions in XP-A cells in vivo and in vitro.

Full Text

The Full Text of this article is available as a PDF (245.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson R. M., Croteau D. L., Stierum R. H., Filburn C., Parsell R., Bohr V. A. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res. 1998 Jan 15;26(2):662–668. doi: 10.1093/nar/26.2.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asahina H., Kuraoka I., Shirakawa M., Morita E. H., Miura N., Miyamoto I., Ohtsuka E., Okada Y., Tanaka K. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res. 1994 Nov;315(3):229–237. doi: 10.1016/0921-8777(94)90034-5. [DOI] [PubMed] [Google Scholar]
  3. Aspinwall R., Rothwell D. G., Roldan-Arjona T., Anselmino C., Ward C. J., Cheadle J. P., Sampson J. R., Lindahl T., Harris P. C., Hickson I. D. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):109–114. doi: 10.1073/pnas.94.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boerrigter M. E., Vijg J. Studies on DNA repair defects in degenerative brain disease. Age Ageing. 1993 Jan;22(1):S44–S52. doi: 10.1093/ageing/22.suppl_1.s44. [DOI] [PubMed] [Google Scholar]
  5. Bohr V. A. DNA repair fine structure and its relations to genomic instability. Carcinogenesis. 1995 Dec;16(12):2885–2892. doi: 10.1093/carcin/16.12.2885. [DOI] [PubMed] [Google Scholar]
  6. Cooper P. K., Nouspikel T., Clarkson S. G., Leadon S. A. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997 Feb 14;275(5302):990–993. doi: 10.1126/science.275.5302.990. [DOI] [PubMed] [Google Scholar]
  7. Dianov G., Bischoff C., Piotrowski J., Bohr V. A. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J Biol Chem. 1998 Dec 11;273(50):33811–33816. doi: 10.1074/jbc.273.50.33811. [DOI] [PubMed] [Google Scholar]
  8. Dianov G., Lindahl T. Reconstitution of the DNA base excision-repair pathway. Curr Biol. 1994 Dec 1;4(12):1069–1076. doi: 10.1016/s0960-9822(00)00245-1. [DOI] [PubMed] [Google Scholar]
  9. Dizdaroglu M. Characterization of free radical-induced damage to DNA by the combined use of enzymatic hydrolysis and gas chromatography-mass spectrometry. J Chromatogr. 1986 Oct 3;367(2):357–366. doi: 10.1016/s0021-9673(00)94856-8. [DOI] [PubMed] [Google Scholar]
  10. Dizdaroglu M. Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol. 1994;234:3–16. doi: 10.1016/0076-6879(94)34072-2. [DOI] [PubMed] [Google Scholar]
  11. Dizdaroglu M., Karahalil B., Sentürker S., Buckley T. J., Roldán-Arjona T. Excision of products of oxidative DNA base damage by human NTH1 protein. Biochemistry. 1999 Jan 5;38(1):243–246. doi: 10.1021/bi9819071. [DOI] [PubMed] [Google Scholar]
  12. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992 Sep;275(3-6):331–342. doi: 10.1016/0921-8734(92)90036-o. [DOI] [PubMed] [Google Scholar]
  13. Doetsch P. W., Zasatawny T. H., Martin A. M., Dizdaroglu M. Monomeric base damage products from adenine, guanine, and thymine induced by exposure of DNA to ultraviolet radiation. Biochemistry. 1995 Jan 24;34(3):737–742. doi: 10.1021/bi00003a005. [DOI] [PubMed] [Google Scholar]
  14. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L. S., Lane D. P., Abbondandolo A., Dogliotti E. Two pathways for base excision repair in mammalian cells. J Biol Chem. 1996 Apr 19;271(16):9573–9578. doi: 10.1074/jbc.271.16.9573. [DOI] [PubMed] [Google Scholar]
  15. Giglia G., Dumaz N., Drougard C., Avril M. F., Daya-Grosjean L., Sarasin A. p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Res. 1998 Oct 1;58(19):4402–4409. [PubMed] [Google Scholar]
  16. Gowen L. C., Avrutskaya A. V., Latour A. M., Koller B. H., Leadon S. A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998 Aug 14;281(5379):1009–1012. doi: 10.1126/science.281.5379.1009. [DOI] [PubMed] [Google Scholar]
  17. Hartman P. S., De Wilde D., Dwarakanath V. N. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans. Photochem Photobiol. 1995 Jun;61(6):607–614. doi: 10.1111/j.1751-1097.1995.tb09876.x. [DOI] [PubMed] [Google Scholar]
  18. Jaiswal M., Lipinski L. J., Bohr V. A., Mazur S. J. Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. Nucleic Acids Res. 1998 May 1;26(9):2184–2191. doi: 10.1093/nar/26.9.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jaruga P., Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 1996 Apr 15;24(8):1389–1394. doi: 10.1093/nar/24.8.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karahalil B., Girard P. M., Boiteux S., Dizdaroglu M. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res. 1998 Mar 1;26(5):1228–1233. doi: 10.1093/nar/26.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karahalil B., Roldán-Arjona T., Dizdaroglu M. Substrate specificity of Schizosaccharomyces pombe Nth protein for products of oxidative DNA damage. Biochemistry. 1998 Jan 13;37(2):590–595. doi: 10.1021/bi971660s. [DOI] [PubMed] [Google Scholar]
  22. Klein J. C., Bleeker M. J., Saris C. P., Roelen H. C., Brugghe H. F., van den Elst H., van der Marel G. A., van Boom J. H., Westra J. G., Kriek E. Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res. 1992 Sep 11;20(17):4437–4443. doi: 10.1093/nar/20.17.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kraemer K. H., Lee M. M., Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol. 1987 Feb;123(2):241–250. doi: 10.1001/archderm.123.2.241. [DOI] [PubMed] [Google Scholar]
  25. Krokan H. E., Standal R., Slupphaug G. DNA glycosylases in the base excision repair of DNA. Biochem J. 1997 Jul 1;325(Pt 1):1–16. doi: 10.1042/bj3250001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kvam E., Tyrrell R. M. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis. 1997 Dec;18(12):2379–2384. doi: 10.1093/carcin/18.12.2379. [DOI] [PubMed] [Google Scholar]
  27. Leadon S. A., Cooper P. K. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10499–10503. doi: 10.1073/pnas.90.22.10499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsumoto Y., Kim K., Bogenhagen D. F. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol. 1994 Sep;14(9):6187–6197. doi: 10.1128/mcb.14.9.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nackerdien Z., Olinski R., Dizdaroglu M. DNA base damage in chromatin of gamma-irradiated cultured human cells. Free Radic Res Commun. 1992;16(4):259–273. doi: 10.3109/10715769209049179. [DOI] [PubMed] [Google Scholar]
  30. Nagelhus T. A., Haug T., Singh K. K., Keshav K. F., Skorpen F., Otterlei M., Bharati S., Lindmo T., Benichou S., Benarous R. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem. 1997 Mar 7;272(10):6561–6566. doi: 10.1074/jbc.272.10.6561. [DOI] [PubMed] [Google Scholar]
  31. Parshad R. P., Sanford K. K., Price F. M., Melnick L. K., Nee L. E., Schapiro M. B., Tarone R. E., Robbins J. H. Fluorescent light-induced chromatid breaks distinguish Alzheimer disease cells from normal cells in tissue culture. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5146–5150. doi: 10.1073/pnas.93.10.5146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parshad R., Price F. M., Bohr V. A., Cowans K. H., Zujewski J. A., Sanford K. K. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer. 1996 Jul;74(1):1–5. doi: 10.1038/bjc.1996.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pflaum M., Boiteux S., Epe B. Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis. 1994 Feb;15(2):297–300. doi: 10.1093/carcin/15.2.297. [DOI] [PubMed] [Google Scholar]
  34. Radicella J. P., Dherin C., Desmaze C., Fox M. S., Boiteux S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8010–8015. doi: 10.1073/pnas.94.15.8010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reardon J. T., Bessho T., Kung H. C., Bolton P. H., Sancar A. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9463–9468. doi: 10.1073/pnas.94.17.9463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roldán-Arjona T., Anselmino C., Lindahl T. Molecular cloning and functional analysis of a Schizosaccharomyces pombe homologue of Escherichia coli endonuclease III. Nucleic Acids Res. 1996 Sep 1;24(17):3307–3312. doi: 10.1093/nar/24.17.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roldán-Arjona T., Wei Y. F., Carter K. C., Klungland A., Anselmino C., Wang R. P., Augustus M., Lindahl T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8016–8020. doi: 10.1073/pnas.94.15.8016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rosenquist T. A., Zharkov D. O., Grollman A. P. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7429–7434. doi: 10.1073/pnas.94.14.7429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Satoh M. S., Jones C. J., Wood R. D., Lindahl T. DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6335–6339. doi: 10.1073/pnas.90.13.6335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sentürker S., Karahalil B., Inal M., Yilmaz H., Müslümanoglu H., Gedikoglu G., Dizdaroglu M. Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Lett. 1997 Oct 27;416(3):286–290. doi: 10.1016/s0014-5793(97)01226-x. [DOI] [PubMed] [Google Scholar]
  41. Tyrrell R. M., Keyse S. M. New trends in photobiology. The interaction of UVA radiation with cultured cells. J Photochem Photobiol B. 1990 Mar;4(4):349–361. doi: 10.1016/1011-1344(90)85014-n. [DOI] [PubMed] [Google Scholar]
  42. Vuillaume M., Daya-Grosjean L., Vincens P., Pennetier J. L., Tarroux P., Baret A., Calvayrac R., Taieb A., Sarasin A. Striking differences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis. 1992 Mar;13(3):321–328. doi: 10.1093/carcin/13.3.321. [DOI] [PubMed] [Google Scholar]
  43. Warburg O., Geissler A. W., Lorenz S. Wirkung von Riboflavin und Luminoflavin auf wachsende Krebszellen. Z Klin Chem Klin Biochem. 1968 Sep;6(5):467–468. [PubMed] [Google Scholar]
  44. Wood R. D. Proteins that participate in nucleotide excision repair of DNA in mammalian cells. Philos Trans R Soc Lond B Biol Sci. 1995 Jan 30;347(1319):69–74. doi: 10.1098/rstb.1995.0011. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES