Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3183–3189. doi: 10.1093/nar/27.15.3183

Photocrosslinking locates a binding site for the large subunit of human replication protein A to the damaged strand of cisplatin-modified DNA.

U Schweizer 1, T Hey 1, G Lipps 1, G Krauss 1
PMCID: PMC148546  PMID: 10454616

Abstract

The repair proteins XPA, XPC and replication protein A (RPA) have been implicated in the primary recognition of damaged DNA sites during nucleotide excision repair. Detailed structural information on the binding of these proteins to DNA lesions is however lacking. We have studied the binding of human RPA (hRPA) and hRPA-XPA-complexes to model oligonucleo-tides containing a single 1, 3-d(GTG)-cisplatin-modification by photocrosslinking and electrophoretic mobility shift experiments. The 70 kDa subunit of hRPA can be crosslinked with high efficiency to cisplatin-modified DNA probes carrying 5-iodo-2"-deoxyuridin (5-IdU) as crosslinking chromophore. High efficiency crosslinking is dependent on the presence of the DNA lesion and occurs preferentially at its 5"-side. Examination of the crosslinking efficiency in dependence on the position of the 5-IdU chromophore indicates a specific positioning of hRPA with respect to the platination site. When hRPA and XPA are both present mainly hRPA is crosslinked to the DNA. Our mobility shift experiments directly show the formation of a stable ternary complex of hRPA, XPA and the damaged DNA. The affinity of the XPA-hRPA complex to the damaged DNA is increased by more than one order of magnitude as compared to hRPA alone.

Full Text

The Full Text of this article is available as a PDF (340.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwell L. J., Borowiec J. A. Human replication protein A binds single-stranded DNA in two distinct complexes. Mol Cell Biol. 1994 Jun;14(6):3993–4001. doi: 10.1128/mcb.14.6.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackwell L. J., Borowiec J. A., Mastrangelo I. A. Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol. 1996 Sep;16(9):4798–4807. doi: 10.1128/mcb.16.9.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bochkarev A., Pfuetzner R. A., Edwards A. M., Frappier L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature. 1997 Jan 9;385(6612):176–181. doi: 10.1038/385176a0. [DOI] [PubMed] [Google Scholar]
  4. Burns J. L., Guzder S. N., Sung P., Prakash S., Prakash L. An affinity of human replication protein A for ultraviolet-damaged DNA. J Biol Chem. 1996 May 17;271(20):11607–11610. doi: 10.1074/jbc.271.20.11607. [DOI] [PubMed] [Google Scholar]
  5. Cho G., Kim J., Rho H. M., Jung G. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1. Nucleic Acids Res. 1995 Aug 11;23(15):2980–2987. doi: 10.1093/nar/23.15.2980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clugston C. K., McLaughlin K., Kenny M. K., Brown R. Binding of human single-stranded DNA binding protein to DNA damaged by the anticancer drug cis-diamminedichloroplatinum (II). Cancer Res. 1992 Nov 15;52(22):6375–6379. [PubMed] [Google Scholar]
  7. Evans E., Fellows J., Coffer A., Wood R. D. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 1997 Feb 3;16(3):625–638. doi: 10.1093/emboj/16.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans E., Moggs J. G., Hwang J. R., Egly J. M., Wood R. D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 1997 Nov 3;16(21):6559–6573. doi: 10.1093/emboj/16.21.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgaki A., Hübscher U. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res. 1993 Aug 11;21(16):3659–3665. doi: 10.1093/nar/21.16.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Georgaki A., Strack B., Podust V., Hübscher U. DNA unwinding activity of replication protein A. FEBS Lett. 1992 Aug 24;308(3):240–244. doi: 10.1016/0014-5793(92)81283-r. [DOI] [PubMed] [Google Scholar]
  11. He Z., Henricksen L. A., Wold M. S., Ingles C. J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature. 1995 Apr 6;374(6522):566–569. doi: 10.1038/374566a0. [DOI] [PubMed] [Google Scholar]
  12. Henricksen L. A., Umbricht C. B., Wold M. S. Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem. 1994 Apr 15;269(15):11121–11132. [PubMed] [Google Scholar]
  13. Ikegami T., Kuraoka I., Saijo M., Kodo N., Kyogoku Y., Morikawa K., Tanaka K., Shirakawa M. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nat Struct Biol. 1998 Aug;5(8):701–706. doi: 10.1038/1400. [DOI] [PubMed] [Google Scholar]
  14. Jones C. J., Wood R. D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993 Nov 16;32(45):12096–12104. doi: 10.1021/bi00096a021. [DOI] [PubMed] [Google Scholar]
  15. Kim C., Wold M. S. Recombinant human replication protein A binds to polynucleotides with low cooperativity. Biochemistry. 1995 Feb 14;34(6):2058–2064. doi: 10.1021/bi00006a028. [DOI] [PubMed] [Google Scholar]
  16. Kim J. K., Choi B. S. The solution structure of DNA duplex-decamer containing the (6-4) photoproduct of thymidylyl(3'-->5')thymidine by NMR and relaxation matrix refinement. Eur J Biochem. 1995 Mar 15;228(3):849–854. doi: 10.1111/j.1432-1033.1995.tb20331.x. [DOI] [PubMed] [Google Scholar]
  17. Kim J. K., Patel D., Choi B. S. Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. Photochem Photobiol. 1995 Jul;62(1):44–50. doi: 10.1111/j.1751-1097.1995.tb05236.x. [DOI] [PubMed] [Google Scholar]
  18. Kuraoka I., Morita E. H., Saijo M., Matsuda T., Morikawa K., Shirakawa M., Tanaka K. Identification of a damaged-DNA binding domain of the XPA protein. Mutat Res. 1996 Jan 2;362(1):87–95. doi: 10.1016/0921-8777(95)00038-0. [DOI] [PubMed] [Google Scholar]
  19. Lavrik O. I., Nasheuer H. P., Weisshart K., Wold M. S., Prasad R., Beard W. A., Wilson S. H., Favre A. Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. Nucleic Acids Res. 1998 Jan 15;26(2):602–607. doi: 10.1093/nar/26.2.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee S. H., Kim D. K., Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J Biol Chem. 1995 Sep 15;270(37):21800–21805. doi: 10.1074/jbc.270.37.21800. [DOI] [PubMed] [Google Scholar]
  21. Li L., Lu X., Peterson C. A., Legerski R. J. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol. 1995 Oct;15(10):5396–5402. doi: 10.1128/mcb.15.10.5396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuda T., Saijo M., Kuraoka I., Kobayashi T., Nakatsu Y., Nagai A., Enjoji T., Masutani C., Sugasawa K., Hanaoka F. DNA repair protein XPA binds replication protein A (RPA). J Biol Chem. 1995 Feb 24;270(8):4152–4157. doi: 10.1074/jbc.270.8.4152. [DOI] [PubMed] [Google Scholar]
  23. Matsunaga T., Park C. H., Bessho T., Mu D., Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem. 1996 May 10;271(19):11047–11050. doi: 10.1074/jbc.271.19.11047. [DOI] [PubMed] [Google Scholar]
  24. Meisenheimer K. M., Koch T. H. Photocross-linking of nucleic acids to associated proteins. Crit Rev Biochem Mol Biol. 1997;32(2):101–140. doi: 10.3109/10409239709108550. [DOI] [PubMed] [Google Scholar]
  25. Moggs J. G., Szymkowski D. E., Yamada M., Karran P., Wood R. D. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res. 1997 Feb 1;25(3):480–491. doi: 10.1093/nar/25.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Patrick S. M., Turchi J. J. Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro. Biochemistry. 1998 Jun 16;37(24):8808–8815. doi: 10.1021/bi9730590. [DOI] [PubMed] [Google Scholar]
  28. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  29. Shamoo Y., Friedman A. M., Parsons M. R., Konigsberg W. H., Steitz T. A. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature. 1995 Jul 27;376(6538):362–366. doi: 10.1038/376362a0. [DOI] [PubMed] [Google Scholar]
  30. Shamoo Y., Williams K. R., Konigsberg W. H. Photochemical crosslinking of bacteriophage T4 single-stranded DNA-binding protein (gp32) to oligo-p(dT)8: identification of phenylalanine-183 as the site of crosslinking. Proteins. 1988;4(1):1–6. doi: 10.1002/prot.340040103. [DOI] [PubMed] [Google Scholar]
  31. Stump W. T., Hall K. B. Crosslinking of an iodo-uridine-RNA hairpin to a single site on the human U1A N-terminal RNA binding domain. RNA. 1995 Mar;1(1):55–63. [PMC free article] [PubMed] [Google Scholar]
  32. Sugasawa K., Ng J. M., Masutani C., Iwai S., van der Spek P. J., Eker A. P., Hanaoka F., Bootsma D., Hoeijmakers J. H. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998 Aug;2(2):223–232. doi: 10.1016/s1097-2765(00)80132-x. [DOI] [PubMed] [Google Scholar]
  33. Szymkowski D. E., Yarema K., Essigmann J. M., Lippard S. J., Wood R. D. An intrastrand d(GpG) platinum crosslink in duplex M13 DNA is refractory to repair by human cell extracts. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10772–10776. doi: 10.1073/pnas.89.22.10772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wakasugi M., Sancar A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6669–6674. doi: 10.1073/pnas.95.12.6669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wold M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61–92. doi: 10.1146/annurev.biochem.66.1.61. [DOI] [PubMed] [Google Scholar]
  36. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  37. de Laat W. L., Appeldoorn E., Sugasawa K., Weterings E., Jaspers N. G., Hoeijmakers J. H. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 1998 Aug 15;12(16):2598–2609. doi: 10.1101/gad.12.16.2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Garderen C. J., van Houte L. P. The solution structure of a DNA duplex containing the cis-Pt(NH3)2[d(-GTG-)-N7(G),N7(G)] adduct, as determined with high-field NMR and molecular mechanics/dynamics. Eur J Biochem. 1994 Nov 1;225(3):1169–1179. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES