Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3197–3204. doi: 10.1093/nar/27.15.3197

Substrate recognition by Escherichia coli MutY using substrate analogs.

C L Chepanoske 1, S L Porello 1, T Fujiwara 1, H Sugiyama 1, S S David 1
PMCID: PMC148548  PMID: 10454618

Abstract

The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA.

Full Text

The Full Text of this article is available as a PDF (340.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr K., Lester R. L. Occurrence of novel antigenic phosphoinositol-containing sphingolipids in the pathogenic yeast Histoplasma capsulatum. Biochemistry. 1984 Nov 6;23(23):5581–5588. doi: 10.1021/bi00318a031. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bulychev N. V., Varaprasad C. V., Dormán G., Miller J. H., Eisenberg M., Grollman A. P., Johnson F. Substrate specificity of Escherichia coli MutY protein. Biochemistry. 1996 Oct 8;35(40):13147–13156. doi: 10.1021/bi960694h. [DOI] [PubMed] [Google Scholar]
  4. Carey J. Gel retardation. Methods Enzymol. 1991;208:103–117. doi: 10.1016/0076-6879(91)08010-f. [DOI] [PubMed] [Google Scholar]
  5. Cunningham R. P. DNA glycosylases. Mutat Res. 1997 May 1;383(3):189–196. doi: 10.1016/s0921-8777(97)00008-6. [DOI] [PubMed] [Google Scholar]
  6. Cunningham R. P. DNA repair: how yeast repairs radical damage. Curr Biol. 1996 Oct 1;6(10):1230–1233. doi: 10.1016/s0960-9822(96)00703-8. [DOI] [PubMed] [Google Scholar]
  7. David Sheila S., Williams Scott D. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair. Chem Rev. 1998 May 7;98(3):1221–1262. doi: 10.1021/cr980321h. [DOI] [PubMed] [Google Scholar]
  8. Dizdaroglu M. Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution. Biochemistry. 1985 Jul 30;24(16):4476–4481. doi: 10.1021/bi00337a032. [DOI] [PubMed] [Google Scholar]
  9. Golinelli M. P., Chmiel N. H., David S. S. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY. Biochemistry. 1999 Jun 1;38(22):6997–7007. doi: 10.1021/bi982300n. [DOI] [PubMed] [Google Scholar]
  10. Grollman A. P., Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993 Jul;9(7):246–249. doi: 10.1016/0168-9525(93)90089-z. [DOI] [PubMed] [Google Scholar]
  11. Guan Y., Manuel R. C., Arvai A. S., Parikh S. S., Mol C. D., Miller J. H., Lloyd S., Tainer J. A. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Biol. 1998 Dec;5(12):1058–1064. doi: 10.1038/4168. [DOI] [PubMed] [Google Scholar]
  12. Kouchakdjian M., Bodepudi V., Shibutani S., Eisenberg M., Johnson F., Grollman A. P., Patel D. J. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry. 1991 Feb 5;30(5):1403–1412. doi: 10.1021/bi00219a034. [DOI] [PubMed] [Google Scholar]
  13. Lau A. Y., Schärer O. D., Samson L., Verdine G. L., Ellenberger T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell. 1998 Oct 16;95(2):249–258. doi: 10.1016/s0092-8674(00)81755-9. [DOI] [PubMed] [Google Scholar]
  14. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  15. Lu A. L., Fawcett W. P. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J Biol Chem. 1998 Sep 25;273(39):25098–25105. doi: 10.1074/jbc.273.39.25098. [DOI] [PubMed] [Google Scholar]
  16. Lu A. L., Tsai-Wu J. J., Cillo J. DNA determinants and substrate specificities of Escherichia coli MutY. J Biol Chem. 1995 Oct 6;270(40):23582–23588. doi: 10.1074/jbc.270.40.23582. [DOI] [PubMed] [Google Scholar]
  17. Manuel R. C., Lloyd R. S. Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Biochemistry. 1997 Sep 16;36(37):11140–11152. doi: 10.1021/bi9709708. [DOI] [PubMed] [Google Scholar]
  18. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  19. McAuley-Hecht K. E., Leonard G. A., Gibson N. J., Thomson J. B., Watson W. P., Hunter W. N., Brown T. Crystal structure of a DNA duplex containing 8-hydroxydeoxyguanine-adenine base pairs. Biochemistry. 1994 Aug 30;33(34):10266–10270. doi: 10.1021/bi00200a006. [DOI] [PubMed] [Google Scholar]
  20. McGoldrick J. P., Yeh Y. C., Solomon M., Essigmann J. M., Lu A. L. Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol Cell Biol. 1995 Feb;15(2):989–996. doi: 10.1128/mcb.15.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michaels M. L., Cruz C., Grollman A. P., Miller J. H. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7022–7025. doi: 10.1073/pnas.89.15.7022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michaels M. L., Miller J. H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol. 1992 Oct;174(20):6321–6325. doi: 10.1128/jb.174.20.6321-6325.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michaels M. L., Tchou J., Grollman A. P., Miller J. H. A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry. 1992 Nov 17;31(45):10964–10968. doi: 10.1021/bi00160a004. [DOI] [PubMed] [Google Scholar]
  24. Porello S. L., Leyes A. E., David S. S. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Biochemistry. 1998 Oct 20;37(42):14756–14764. doi: 10.1021/bi981594+. [DOI] [PubMed] [Google Scholar]
  25. Radicella J. P., Clark E. A., Fox M. S. Some mismatch repair activities in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9674–9678. doi: 10.1073/pnas.85.24.9674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schärer O. D., Deng L., Verdine G. L. Chemical approaches toward understanding base excision DNA repair. Curr Opin Chem Biol. 1997 Dec;1(4):526–531. doi: 10.1016/s1367-5931(97)80048-8. [DOI] [PubMed] [Google Scholar]
  27. Schärer O. D., Kawate T., Gallinari P., Jiricny J., Verdine G. L. Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4878–4883. doi: 10.1073/pnas.94.10.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schärer O. D., Nash H. M., Jiricny J., Laval J., Verdine G. L. Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases. J Biol Chem. 1998 Apr 10;273(15):8592–8597. doi: 10.1074/jbc.273.15.8592. [DOI] [PubMed] [Google Scholar]
  29. Seeberg E., Eide L., Bjørås M. The base excision repair pathway. Trends Biochem Sci. 1995 Oct;20(10):391–397. doi: 10.1016/s0968-0004(00)89086-6. [DOI] [PubMed] [Google Scholar]
  30. Slupphaug G., Mol C. D., Kavli B., Arvai A. S., Krokan H. E., Tainer J. A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. 1996 Nov 7;384(6604):87–92. doi: 10.1038/384087a0. [DOI] [PubMed] [Google Scholar]
  31. Slupska M. M., Baikalov C., Luther W. M., Chiang J. H., Wei Y. F., Miller J. H. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol. 1996 Jul;178(13):3885–3892. doi: 10.1128/jb.178.13.3885-3892.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stivers J. T., Pankiewicz K. W., Watanabe K. A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry. 1999 Jan 19;38(3):952–963. doi: 10.1021/bi9818669. [DOI] [PubMed] [Google Scholar]
  33. Tsai-Wu J. J., Liu H. F., Lu A. L. Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8779–8783. doi: 10.1073/pnas.89.18.8779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  35. Verdine G. L., Bruner S. D. How do DNA repair proteins locate damaged bases in the genome? Chem Biol. 1997 May;4(5):329–334. doi: 10.1016/s1074-5521(97)90123-x. [DOI] [PubMed] [Google Scholar]
  36. Williams S. D., David S. S. Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA. Nucleic Acids Res. 1998 Nov 15;26(22):5123–5133. doi: 10.1093/nar/26.22.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zharkov D. O., Grollman A. P. MutY DNA glycosylase: base release and intermediate complex formation. Biochemistry. 1998 Sep 8;37(36):12384–12394. doi: 10.1021/bi981066y. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES