Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Oct 15;27(20):4001–4007. doi: 10.1093/nar/27.20.4001

Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations.

C Dherin 1, J P Radicella 1, M Dizdaroglu 1, S Boiteux 1
PMCID: PMC148667  PMID: 10497264

Abstract

We have investigated the substrate specificity of the major nuclear form of the human Ogg1 protein, referred as alpha-hOgg1, for excision of damaged bases from DNA exposed to gamma-irradiation. Excision products were identified and quantified using gas chromatography/isotope dilution mass spectrometry (GC/IDMS). The GST-alpha-hOgg1 protein used in this study is a fusion of alpha-hOgg1 to the C-terminus of the GST protein. The results show that GST-alpha-hOgg1 protein excises 8-hydroxyguanine (8-OH-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from DNA exposed to gamma-irradiation in a solution saturated with N(2)O or air. Fourteen other lesions, including oxidised purines and pyrimidines, were not excised from these substrates. Catalytic constants were measured for the excision of 8-OH-Gua and FapyGua from DNA gamma-irradiated under N(2)O. The k (cat)/ K (m)values for excision of 8-OH-Gua and FapyGua were 4.47 x 10(-5)and 8.97 x 10(-5)(min(-1)nM(-1)), respectively. The substrate specificity and the catalytic parameters of the wild-type GST-alpha-hOgg1 protein were compared to that of a polymorphic form of alpha-hOgg1 harbouring a Ser-->Cys mutation at codon 326. In the Japanese population, 47.6% of individuals possess both alleles coding for the wild-type alpha-hOgg1-Ser(326)and mutant alpha-hOgg1-Cys(326)proteins. The GST-alpha-hOgg1-Cys(326)protein was purified and its substrate specificity was determined by GC/IDMS analysis. The results show that the GST-alpha-hOgg1-Cys(326)protein efficiently excises 8-OH-Gua and FapyGua from gamma-irradiated DNA. The k (cat)/ K (m)values for excision of 8-OH-Gua and FapyGua were 2. 82 x 10(-5)and 4.43 x 10(-5)(min(-1)nM(-1)), respectively. Furthermore, we compared the capacity of these two forms of alpha-hOgg1 to act on substrates containing 2,6-diamino-4-hydroxy-5- N -methylformamidopyrimidine (Me-FapyGua). The k (cat)/ K (m)values for excision of Me-FapyGua were 278 x 10(-5)and 319 x 10(-5)(min(-1)nM(-1)), respectively. Cleavage of 34mer oligodeoxyribonucleotides containing 8-OH-Gua, 8-hydroxyadenine or an apurinic/apyrimidinic site paired with a cytosine was also investigated. The results show that both GST-alpha-hOgg1-Ser(326)and GST-alpha-hOgg1-Cys(326)catalyse the various cleavage reactions at very similar rates. Furthermore, both proteins efficiently complement the mutator phenotype of the fpg mutY mutant of Escherichia coli.

Full Text

The Full Text of this article is available as a PDF (305.5 KB).


Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES