Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Oct 15;27(20):4106–4113. doi: 10.1093/nar/27.20.4106

The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase.

H J Ball 1, A Melnick 1, R Shaknovich 1, R A Kohanski 1, J D Licht 1
PMCID: PMC148680  PMID: 10497277

Abstract

A binding site selection from a CpG island library for the promyelocytic leukemia zinc finger protein (PLZF) identified two high affinity PLZF binding sites. These sequences also bound RARalpha/PLZF, a fusion protein formed in chromosomal translocation t(11;17)(q23;q21) associated with acute promyelocytic leukemia. PLZF bound DNA as a slowly migrating complex with an estimated mol. wt of 600 kDa whose formation was dependent on the POZ/dimerization domain of PLZF. The PLZF-DNA complex was unable to form in the presence of cdc2 antibodies. A PLZF-cdc2 interaction was further demonstrated by co-immunoprecipitation and a biotin-streptavidin pull-down assay. PLZF is a phosphoprotein and immunoprecipi-tates with a cdc2-like kinase activity. The PLZF-DNA complex was abolished with the addition of a phosphatase. These studies suggest that the activity of PLZF, a regulator of the cell cycle, may be modulated by cell cycle proteins. RARalpha/PLZF did not complex with cdc2, this potentially contributing to its aberrant transcriptional properties and potential role in leukemo-genesis.

Full Text

The Full Text of this article is available as a PDF (425.6 KB).


Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES