Skip to main content
CMAJ : Canadian Medical Association Journal logoLink to CMAJ : Canadian Medical Association Journal
. 1986 Mar 15;134(6):597–607.

Positron emission tomography in patients with clinically diagnosed Alzheimer's disease.

P L McGeer, H Kamo, R Harrop, D K Li, H Tuokko, E G McGeer, M J Adam, W Ammann, B L Beattie, D B Calne, et al.
PMCID: PMC1490928  PMID: 3512063

Abstract

Fourteen patients who had clinically diagnosed Alzheimer's disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer's disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer's disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy.

Full text

PDF
597

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M. J., Ruth T. J., Jivan S., Pate B. D. The use of C-18 SEP PAK cartridges to simplify routine production of 2-deoxy-2-[18F]fluoro-D-glucose. Int J Appl Radiat Isot. 1984 Oct;35(10):985–986. doi: 10.1016/0020-708x(84)90219-9. [DOI] [PubMed] [Google Scholar]
  2. Alavi A., Reivich M., Ferris S., Christman D., Fowler J., MacGregor R., Farkas T., Greenberg J., Dann R., Wolf A. Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography. Exp Brain Res. 1982;Suppl 5:187–195. doi: 10.1007/978-3-642-68507-1_26. [DOI] [PubMed] [Google Scholar]
  3. Berg L., Hughes C. P., Coben L. A., Danziger W. L., Martin R. L., Knesevich J. Mild senile dementia of Alzheimer type: research diagnostic criteria, recruitment, and description of a study population. J Neurol Neurosurg Psychiatry. 1982 Nov;45(11):962–968. doi: 10.1136/jnnp.45.11.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks R. A. Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med. 1982 Jun;23(6):538–539. [PubMed] [Google Scholar]
  5. Bydder G. M., Steiner R. E., Young I. R., Hall A. S., Thomas D. J., Marshall J., Pallis C. A., Legg N. J. Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol. 1982 Aug;139(2):215–236. doi: 10.2214/ajr.139.2.215. [DOI] [PubMed] [Google Scholar]
  6. Cutler N. R., Duara R., Creasey H., Grady C. L., Haxby J. V., Schapiro M. B., Rapoport S. I. NIH Conference. Brain imaging: aging and dementia. Ann Intern Med. 1984 Sep;101(3):355–369. doi: 10.7326/0003-4819-101-3-355. [DOI] [PubMed] [Google Scholar]
  7. Duara R., Grady C., Haxby J., Ingvar D., Sokoloff L., Margolin R. A., Manning R. G., Cutler N. R., Rapoport S. I. Human brain glucose utilization and cognitive function in relation to age. Ann Neurol. 1984 Dec;16(6):703–713. doi: 10.1002/ana.410160613. [DOI] [PubMed] [Google Scholar]
  8. Duara R., Margolin R. A., Robertson-Tchabo E. A., London E. D., Schwartz M., Renfrew J. W., Koziarz B. J., Sundaram M., Grady C., Moore A. M. Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain. 1983 Sep;106(Pt 3):761–775. doi: 10.1093/brain/106.3.761. [DOI] [PubMed] [Google Scholar]
  9. FREYHAN F. A., WOODFORD R. B., KETY S. S. Cerebral blood flow and metabolism in psychoses of senility. J Nerv Ment Dis. 1951 May;113(5):449–456. [PubMed] [Google Scholar]
  10. Foster N. L., Chase T. N., Fedio P., Patronas N. J., Brooks R. A., Di Chiro G. Alzheimer's disease: focal cortical changes shown by positron emission tomography. Neurology. 1983 Aug;33(8):961–965. doi: 10.1212/wnl.33.8.961. [DOI] [PubMed] [Google Scholar]
  11. Foster N. L., Chase T. N., Mansi L., Brooks R., Fedio P., Patronas N. J., Di Chiro G. Cortical abnormalities in Alzheimer's disease. Ann Neurol. 1984 Dec;16(6):649–654. doi: 10.1002/ana.410160605. [DOI] [PubMed] [Google Scholar]
  12. Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
  13. Friedland R. P., Budinger T. F., Koss E., Ober B. A. Alzheimer's disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett. 1985 Feb 4;53(3):235–240. doi: 10.1016/0304-3940(85)90543-9. [DOI] [PubMed] [Google Scholar]
  14. Garnett E. S., Firnau G., Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983 Sep 8;305(5930):137–138. doi: 10.1038/305137a0. [DOI] [PubMed] [Google Scholar]
  15. Garnett E. S., Nahmias C., Firnau G. Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neurol Sci. 1984 Feb;11(1 Suppl):174–179. doi: 10.1017/s0317167100046369. [DOI] [PubMed] [Google Scholar]
  16. Haase G. R. Diseases presenting as dementia. Contemp Neurol Ser. 1977;15:27–67. [PubMed] [Google Scholar]
  17. Hachinski V. C., Iliff L. D., Zilhka E., Du Boulay G. H., McAllister V. L., Marshall J., Russell R. W., Symon L. Cerebral blood flow in dementia. Arch Neurol. 1975 Sep;32(9):632–637. doi: 10.1001/archneur.1975.00490510088009. [DOI] [PubMed] [Google Scholar]
  18. Hawkins R. A., Mazziotta J. C., Phelps M. E., Huang S. C., Kuhl D. E., Carson R. E., Metter E. J., Riege W. H. Cerebral glucose metabolism as a function of age in man: influence of the rate constants in the fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1983 Jun;3(2):250–253. doi: 10.1038/jcbfm.1983.34. [DOI] [PubMed] [Google Scholar]
  19. Herscovitch P., Gado M., Mintun M. A., Raichle M. E. The necessity for correcting for cerebral atrophy in global positron emission tomography measurements. Monogr Neural Sci. 1984;11:93–97. doi: 10.1159/000409194. [DOI] [PubMed] [Google Scholar]
  20. Hubbard B. M., Anderson J. M. Age, senile dementia and ventricular enlargement. J Neurol Neurosurg Psychiatry. 1981 Jul;44(7):631–635. doi: 10.1136/jnnp.44.7.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huckman M. S., Fox J., Topel J. The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology. 1975 Jul;116(1):85–92. doi: 10.1148/116.1.85. [DOI] [PubMed] [Google Scholar]
  22. Kohlmeyer K., Shamena A. R. CT assessment of CSF spaces in the brain in demented and nondemented patients over 60 years of age. AJNR Am J Neuroradiol. 1983 May-Jun;4(3):706–707. [PMC free article] [PubMed] [Google Scholar]
  23. Kuhl D. E. Imaging local brain function with emission computed tomography. Radiology. 1984 Mar;150(3):625–631. doi: 10.1148/radiology.150.3.6607481. [DOI] [PubMed] [Google Scholar]
  24. Kuhl D. E., Metter E. J., Riege W. H., Phelps M. E. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1982;2(2):163–171. doi: 10.1038/jcbfm.1982.15. [DOI] [PubMed] [Google Scholar]
  25. Kuhl D. E., Phelps M. E., Markham C. H., Metter E. J., Riege W. H., Winter J. Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982 Nov;12(5):425–434. doi: 10.1002/ana.410120504. [DOI] [PubMed] [Google Scholar]
  26. Lebrun-Grandié P., Baron J. C., Soussaline F., Loch'h C., Sastre J., Bousser M. G. Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch Neurol. 1983 Apr;40(4):230–236. doi: 10.1001/archneur.1983.04050040060010. [DOI] [PubMed] [Google Scholar]
  27. Martin W. R., Beckman J. H., Calne D. B., Adam M. J., Harrop R., Rogers J. G., Ruth T. J., Sayre C. I., Pate B. D. Cerebral glucose metabolism in Parkinson's disease. Can J Neurol Sci. 1984 Feb;11(1 Suppl):169–173. doi: 10.1017/s0317167100046357. [DOI] [PubMed] [Google Scholar]
  28. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  29. Nickles R. J., Kiuru A. J., Schuster S. M., Holden J. E. A catalytic generator for the production of H2 14O and H2 15O. Prog Nucl Med. 1978;4:72–79. [PubMed] [Google Scholar]
  30. Orzel J. A., Rudd T. G. Heterotopic bone formation: clinical, laboratory, and imaging correlation. J Nucl Med. 1985 Feb;26(2):125–132. [PubMed] [Google Scholar]
  31. Phelps M. E., Huang S. C., Hoffman E. J., Selin C., Sokoloff L., Kuhl D. E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979 Nov;6(5):371–388. doi: 10.1002/ana.410060502. [DOI] [PubMed] [Google Scholar]
  32. Phelps M. E., Mazziotta J. C., Huang S. C. Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab. 1982;2(2):113–162. doi: 10.1038/jcbfm.1982.14. [DOI] [PubMed] [Google Scholar]
  33. Raichle M. E., Martin W. R., Herscovitch P., Mintun M. A., Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983 Sep;24(9):790–798. [PubMed] [Google Scholar]
  34. Reivich M., Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Hoffman E., Alavi A. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979 Jan;44(1):127–137. doi: 10.1161/01.res.44.1.127. [DOI] [PubMed] [Google Scholar]
  35. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  36. Terry R. D., Katzman R. Senile dementia of the Alzheimer type. Ann Neurol. 1983 Nov;14(5):497–506. doi: 10.1002/ana.410140502. [DOI] [PubMed] [Google Scholar]
  37. Yamaguchi F., Meyer J. S., Yamamoto M., Sakai F., Shaw T. Noninvasive regional cerebral blood flow measurements in dementia. Arch Neurol. 1980 Jul;37(7):410–418. doi: 10.1001/archneur.1980.00500560040003. [DOI] [PubMed] [Google Scholar]
  38. Zemcov A., Barclay L., Blass J. P. Regional decline of cerebral blood flow with age in cognitively intact subjects. Neurobiol Aging. 1984 Spring;5(1):1–6. doi: 10.1016/0197-4580(84)90079-4. [DOI] [PubMed] [Google Scholar]
  39. Zemcov A., Risberg J., Barclay L. L., Blass J. P. Diagnosis of Alzheimer's disease and multi-infarct dementia by rCBF compared to clinical classification. Monogr Neural Sci. 1984;11:104–106. doi: 10.1159/000409196. [DOI] [PubMed] [Google Scholar]
  40. de Leon M. J., George A. E., Ferris S. H., Christman D. R., Fowler J. S., Gentes C. I., Brodie J., Reisberg B., Wolf A. P. Positron emission tomography and computed tomography assessments of the aging human brain. J Comput Assist Tomogr. 1984 Feb;8(1):88–94. doi: 10.1097/00004728-198402000-00017. [DOI] [PubMed] [Google Scholar]

Articles from CMAJ: Canadian Medical Association Journal are provided here courtesy of Canadian Medical Association

RESOURCES