Abstract
A comparative study of experimental reversed (RV) and in-situ (INS) vein grafts with respect to the evolution of morphologic and compliance characteristics was done in a canine model. In addition, the compliance characteristics in a series of human INS vein grafts were recorded as a function of time after operation. At 6 months after implantation, all experimental grafts displayed well-developed intimal hyperplasia. There was no significant difference in either absolute intimal thickness (INS 0.133 +/- 0.09 mm vs. RV 0.085 +/- 0.06 mm; NS) nor in the percentage of the total wall thickness occupied by the intima when experimental INS grafts were compared with RV grafts after 6 months. Similarly, compliance values of INS and RV vein grafts were similar at all time intervals examined up to 6 months after operation. Thirty-three human INS vein grafts had a mean compliance value of 1.74 +/- 0.72 (percent radial changes per mmHg X 10(-2) at a median postoperative interval of 14 weeks. This value did not differ significantly from those measured in the INS vein grafts. Although all vein grafts examined retained their native viscoelastic properties, this study suggests that functioning human INS vein grafts are less compliant than previously suspected on the basis of prior ex-vivo and clinical studies of RV saphenous vein grafts. The purported clinical superiority of the INS vein graft cannot be explained on the basis of superior biomechanical performance or failure to develop intimal hyperplasia.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baird R. N., Kidson I. G., L'Italien G. J., Abbott W. M. Dynamic compliance of arterial grafts. Am J Physiol. 1977 Nov;233(5):H568–H572. doi: 10.1152/ajpheart.1977.233.5.H568. [DOI] [PubMed] [Google Scholar]
- Batson R. C., Sottiurai V. S. Nonreversed and in situ vein grafts. Clinical and experimental observations. Ann Surg. 1985 Jun;201(6):771–779. doi: 10.1097/00000658-198506000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beard J. D., Fairgrieve J. Compliance changes in in-situ femoropopliteal bypass vein grafts. Br J Surg. 1986 Mar;73(3):196–199. doi: 10.1002/bjs.1800730313. [DOI] [PubMed] [Google Scholar]
- Brody W. R., Kosek J. C., Angell W. W. Changes in vein grafts following aorto-coronary bypass induced by pressure and ischemia. J Thorac Cardiovasc Surg. 1972 Dec;64(6):847–854. [PubMed] [Google Scholar]
- Buchbinder D., Singh J. K., Karmody A. M., Leather R. P., Shah D. M. Resident research award. Comparison of patency rate and structural changes of in situ and reversed vein arterial bypass. J Surg Res. 1981 Mar;30(3):213–222. doi: 10.1016/0022-4804(81)90150-5. [DOI] [PubMed] [Google Scholar]
- Bush H. L., Jr, Graber J. N., Jakubowski J. A., Hong S. L., McCabe M., Deykin D., Nabseth D. C. Favorable balance of prostacyclin and thromboxane A2 improves early patency of human in situ vein grafts. J Vasc Surg. 1984 Jan;1(1):149–159. [PubMed] [Google Scholar]
- Bush H. L., Jr, Jakubowski J. A., Curl G. R., Deykin D., Nabseth D. C. The natural history of endothelial structure and function in arterialized vein grafts. J Vasc Surg. 1986 Feb;3(2):204–215. doi: 10.1067/mva.1986.avs0030204. [DOI] [PubMed] [Google Scholar]
- Bush H. L., Jr, Nabseth D. C., Curl G. R., O'Hara E. T., Johnson W. C., Vollman R. W. In situ saphenous vein bypass grafts for limb salvage. A current fad or a viable alternative to reversed vein bypass grafts? Am J Surg. 1985 Apr;149(4):477–480. doi: 10.1016/s0002-9610(85)80043-x. [DOI] [PubMed] [Google Scholar]
- Cambria R. P., Megerman J., Abbott W. M. Endothelial preservation in reversed and in situ autogenous vein grafts. A quantitative experimental study. Ann Surg. 1985 Jul;202(1):50–55. doi: 10.1097/00000658-198507000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carney W. I., Jr, Balko A., Barrett M. S. In situ femoropopliteal and infrapopliteal bypass. Two-year experience. Arch Surg. 1985 Jul;120(7):812–816. doi: 10.1001/archsurg.1985.01390310050011. [DOI] [PubMed] [Google Scholar]
- Fuchs J. C., Mitchener J. S., 3rd, Hagen P. O. Postoperative changes in autologous vein grafts. Ann Surg. 1978 Jul;188(1):1–15. doi: 10.1097/00000658-197807000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs R. M., Brin K. P., Brinker J. A., Guzman P. A., Heuser R. R., Yin F. C. Augmentation of regional coronary blood flow by intra-aortic balloon counterpulsation in patients with unstable angina. Circulation. 1983 Jul;68(1):117–123. doi: 10.1161/01.cir.68.1.117. [DOI] [PubMed] [Google Scholar]
- Glenn K. C., Ross R. Human monocyte-derived growth factor(s) for mesenchymal cells: activation of secretion by endotoxin and concanavalin A. Cell. 1981 Sep;25(3):603–615. doi: 10.1016/0092-8674(81)90168-9. [DOI] [PubMed] [Google Scholar]
- Gunstensen J., Smith R. C., El-Maraghi N., Julian J., Belbeck L. Intimal hyperplasia in autogenous veins used for arterial replacement. Can J Surg. 1982 Mar;25(2):158-60, 165. [PubMed] [Google Scholar]
- Hokanson D. E., Mozersky D. J., Sumner D. S., Strandness D. E., Jr A phase-locked echo tracking system for recording arterial diameter changes in vivo. J Appl Physiol. 1972 May;32(5):728–733. doi: 10.1152/jappl.1972.32.5.728. [DOI] [PubMed] [Google Scholar]
- Leather R. P., Shah D. M., Buchbinder D., Annest S. J., Karmody A. M. Further experience with the saphenous vein used in situ for arterial bypass. Am J Surg. 1981 Oct;142(4):506–510. doi: 10.1016/0002-9610(81)90385-8. [DOI] [PubMed] [Google Scholar]
- Levine A. W., Bandyk D. F., Bonier P. H., Towne J. B. Lessons learned in adopting the in situ saphenous vein bypass. J Vasc Surg. 1985 Jan;2(1):145–153. [PubMed] [Google Scholar]
- Lye C. R., Sumner D. S., Hokanson D. E., Strandness D. E., Jr The transcutaneous measurement of the elastic properties of the human saphenous vein femoropopliteal bypass graft. Surg Gynecol Obstet. 1975 Dec;141(6):891–895. [PubMed] [Google Scholar]
- Megerman J., Hasson J. E., Warnock D. F., L'Italien G. J., Abbott W. M. Noninvasive measurements of nonlinear arterial elasticity. Am J Physiol. 1986 Feb;250(2 Pt 2):H181–H188. doi: 10.1152/ajpheart.1986.250.2.H181. [DOI] [PubMed] [Google Scholar]
- Mozersky D. J., Sumner D. S., Hokanson D. E., Strandness D. E., Jr Transcutaneous measurement of the elastic properties of the human femoral artery. Circulation. 1972 Nov;46(5):948–955. doi: 10.1161/01.cir.46.5.948. [DOI] [PubMed] [Google Scholar]
- Seidel C. L., Lewis R. M., Bowers R., Bukoski R. D., Kim H. S., Allen J. C., Hartley C. Adaptation of canine saphenous veins to grafting. Correlation of contractility and contractile protein content. Circ Res. 1984 Jul;55(1):102–109. doi: 10.1161/01.res.55.1.102. [DOI] [PubMed] [Google Scholar]
- Stewart G. J., Ritchie W. G., Lynch P. R. Venous endothelial damage produced by massive sticking and emigration of leukocytes. Am J Pathol. 1974 Mar;74(3):507–532. [PMC free article] [PubMed] [Google Scholar]
- Taylor L. M., Jr, Phinney E. S., Porter J. M. Present status of reversed vein bypass for lower extremity revascularization. J Vasc Surg. 1986 Feb;3(2):288–297. [PubMed] [Google Scholar]
- Walden R., L'Italien G. J., Megerman J., Abbott W. M. Matched elastic properties and successful arterial grafting. Arch Surg. 1980 Oct;115(10):1166–1169. doi: 10.1001/archsurg.1980.01380100018004. [DOI] [PubMed] [Google Scholar]