Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1987 Jul;206(1):5–17. doi: 10.1097/00000658-198707000-00002

The role of the small intestine in ammonia production after gastric blood administration.

S P Sugarbaker, A Revhaug, D W Wilmore
PMCID: PMC1492937  PMID: 3496861

Abstract

It is commonly believed that the digestion of intraluminal blood by colonic bacteria is the primary cause of increased ammonia production after upper gastrointestinal hemorrhage. To evaluate the role of the small intestine in ammonia production, blood, amino acids, or water (5 mL/kg) was administered as a meal or enema to awake dogs with chronic indwelling catheters. After blood meals, intestinal ammonia production increased rapidly to peak at 60 minutes and returned to basal levels. This response was mimicked by the gastric administration of ammoniagenic amino acids. No change in ammonia production occurred with water administration. In contrast, colonic blood administration resulted in a gradual rise in ammonia production, and peaked at 150 minutes. Amino acid enemas resulted in a similar but somewhat more rapid response. No change occurred with water enemas. After gut decontamination, ammonia production did not increase after blood enemas. However, the rapid increase in ammonia production persisted after blood meals. It is concluded that both the small bowel and colon participate in the augmented ammonia production that occurs after upper gastrointestinal hemorrhage. Gut decontamination reduces ammonia production by altering the colonic microflora, but is not specific therapy directed towards amino acid metabolism by the enterocytes of the small bowel and thus, does not alter the ammonia produced by the small intestine.

Full text

PDF
5

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auguste L. J., Mavor E., Citrin P., Stein T. A., Mandell C., Wise L. Nutritional effects of postgastrectomy reconstructions. Am J Surg. 1985 Nov;150(5):537–542. doi: 10.1016/0002-9610(85)90432-5. [DOI] [PubMed] [Google Scholar]
  2. Benyó I., Sándor J., Szabó G. The mechanism of the changes in splanchnic blood flow after feeding. Res Exp Med (Berl) 1977 Dec 15;171(3):255–261. doi: 10.1007/BF01851509. [DOI] [PubMed] [Google Scholar]
  3. Bloomgarden Z. T., Liljenquist J., Lacy W., Rabin D. Amino acid disposition by liver and gastrointestinal tract after protein and glucose ingestion. Am J Physiol. 1981 Jul;241(1):E90–E99. doi: 10.1152/ajpendo.1981.241.1.E90. [DOI] [PubMed] [Google Scholar]
  4. Code C. F., Marlett J. A. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol. 1975 Mar;246(2):289–309. doi: 10.1113/jphysiol.1975.sp010891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Wever I., Eeckhout C., Vantrappen G., Hellemans J. Disruptive effect of test meals on interdigestive motor complex in dogs. Am J Physiol. 1978 Dec;235(6):E661–E665. doi: 10.1152/ajpendo.1978.235.6.E661. [DOI] [PubMed] [Google Scholar]
  6. Elwyn D. H., Parikh H. C., Shoemaker W. C. Amino acid movements between gut, liver, and periphery in unanesthetized dogs. Am J Physiol. 1968 Nov;215(5):1260–1275. doi: 10.1152/ajplegacy.1968.215.5.1260. [DOI] [PubMed] [Google Scholar]
  7. Fraser C. L., Arieff A. I. Hepatic encephalopathy. N Engl J Med. 1985 Oct 3;313(14):865–873. doi: 10.1056/NEJM198510033131406. [DOI] [PubMed] [Google Scholar]
  8. GRYSKA P. F., BARSAMIAN E. M. The site of ammonia production and absorption in Eck fistula dogs. Surg Forum. 1958;9:99–102. [PubMed] [Google Scholar]
  9. Gordon S. J., Haro E. N., Paes I. C., Faloon W. W. Studies of malabsorption and calcium excretion induced by neomycin sulfate: effect of intestinal site, bile salt, and pancreatic enzymes. JAMA. 1968 Apr 8;204(2):129–134. [PubMed] [Google Scholar]
  10. Katz M. L., Bergman E. N. Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Am J Physiol. 1969 Apr;216(4):946–952. doi: 10.1152/ajplegacy.1969.216.4.946. [DOI] [PubMed] [Google Scholar]
  11. McDERMOTT W. V., Jr, ADAMS R. D., RIDDELL A. G. Ammonia metabolism in man. Ann Surg. 1954 Oct;140(4):539–556. doi: 10.1097/00000658-195410000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nance F. C., Batson R. C., Kline D. G. Ammonia production in germ-free Eck fistula dogs. Surgery. 1971 Aug;70(2):169–174. [PubMed] [Google Scholar]
  13. Onstad G. R., Zieve L. What determines blood ammonia? Gastroenterology. 1979 Oct;77(4 Pt 1):803–805. [PubMed] [Google Scholar]
  14. Rudman D., Galambos J. T., Smith R. B., 3rd, Salam A. A., Warren W. D. Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am J Clin Nutr. 1973 Sep;26(9):916–925. doi: 10.1093/ajcn/26.9.916. [DOI] [PubMed] [Google Scholar]
  15. SILEN W., HARPER H. A., MAWDSLEY D. L., WEIRICH W. L. Effect of antibacterial agents on ammonia production within the intestine. Proc Soc Exp Biol Med. 1955 Jan;88(1):138–140. doi: 10.3181/00379727-88-21516. [DOI] [PubMed] [Google Scholar]
  16. Silk D. B., Grimble G. K., Rees R. G. Protein digestion and amino acid and peptide absorption. Proc Nutr Soc. 1985 Feb;44(1):63–72. doi: 10.1079/pns19850011. [DOI] [PubMed] [Google Scholar]
  17. Simon G. L., Gorbach S. L. Intestinal microflora. Med Clin North Am. 1982 May;66(3):557–574. doi: 10.1016/s0025-7125(16)31407-9. [DOI] [PubMed] [Google Scholar]
  18. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Souba W. W., Smith R. J., Wilmore D. W. Effects of glucocorticoids on glutamine metabolism in visceral organs. Metabolism. 1985 May;34(5):450–456. doi: 10.1016/0026-0495(85)90211-2. [DOI] [PubMed] [Google Scholar]
  20. Summerskill W. H., Wolpert E. Ammonia metabolism in the gut. Am J Clin Nutr. 1970 May;23(5):633–639. doi: 10.1093/ajcn/23.5.633. [DOI] [PubMed] [Google Scholar]
  21. Vriesendorp H. M., Heidt P. J., Zurcher C. Gastrointestinal decontamination of dogs treated with total body irradiation and bone marrow transplantation. Exp Hematol. 1981 Oct;9(9):904–916. [PubMed] [Google Scholar]
  22. WELCH H. F., PENDER J. C., KILEY J. E. Digestion of blood in the genesis of hepatic coma. Surg Forum. 1957;7:434–437. [PubMed] [Google Scholar]
  23. Weber F. L., Jr, Veach G. L. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology. 1979 Aug;77(2):235–240. [PubMed] [Google Scholar]
  24. Windmueller H. G. Glutamine utilization by the small intestine. Adv Enzymol Relat Areas Mol Biol. 1982;53:201–237. doi: 10.1002/9780470122983.ch6. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES