Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1988 Jan;207(1):95–101. doi: 10.1097/00000658-198801000-00018

Minor role of ketone bodies in energy metabolism by skeletal muscle tissue during the postoperative course.

W H Hartl 1, K W Jauch 1, R Kimmig 1, M Wicklmayr 1, B Günther 1, G Heberer 1
PMCID: PMC1493250  PMID: 3276273

Abstract

To evaluate changes of peripheral ketone body (KB) metabolism after operation, muscle metabolism in postsurgical patients was studied at 3 hours (SI) and 24 hours (SII) after surgery by the forearm catheter technique. Data were compared to those of equivalent fasted controls (CI, CII). In a manner consistent with enhanced mobilization of endogenous substrate stores, arterial concentrations of free fatty acids (FFA), 3-hydroxybutyrate (3-HOB), and acetoacetate (AcAc) were markedly elevated immediately after surgery. This increase was accompanied by a rise in muscular utilization of AcAc (SI: 0.21 +/- 0.05 mumol/100 g/min; CI: 0.08 +/- 0.05, p less than 0.05) and 3-HOB (SI: 0.24 +/- 0.06 mumol/100 g/min; CI: 0.11 +/- 0.01, p less than 0.05). Surprisingly, on the first postoperative day, concentrations of AcAc and 3-HOB fell below those of fasting controls. Concomitantly, the utilization rate of AcAc by muscle (SII: 0.07 +/- 0.03 mumol/100 g/min; CII: 0.27 +/- 0.04, p less than 0.05) was significantly lower in patients than in controls. Reduction of the fractional extraction rate of AcAc (SI: 38.4 +/- 3.8%; SII: 24.0 +/- 6.1%, p less than 0.05), as well as a net production of 3-HOB by muscle (SII: -0.08 +/- 0.05 mumol/100 g/min; CII: 0.49 +/- 0.13, p less than 0.05) 24 hours after surgery indicated a reduced peripheral capacity for KB removal. Since this finding was related to a significantly higher rate of muscular glycerol production (SII: -0.13 +/- 0.03 mumol/100 g/min; CII: -0.06 +/- 0.02, p less than 0.05), one may suggest that increased intramuscular availability of FFA from triglyceride hydrolysis was responsible for the impairment of peripheral KB utilization. These results indicate that KBs contribute little to energy metabolism in skeletal muscle tissue in the late postoperative phase.

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beisel W. R. Mediators of fever and muscle proteolysis. N Engl J Med. 1983 Mar 10;308(10):586–587. doi: 10.1056/NEJM198303103081009. [DOI] [PubMed] [Google Scholar]
  3. Birkhahn R. H., Long C. L., Fitkin D. L., Busnardo A. C., Geiger J. W., Blakemore W. S. A comparison of the effects of skeletal trauma and surgery on the ketosis of starvation in man. J Trauma. 1981 Jul;21(7):513–519. doi: 10.1097/00005373-198107000-00002. [DOI] [PubMed] [Google Scholar]
  4. Blackburn G. L., Flatt J. P., Clowes G. H., O'Donnell T. E. Peripheral intravenous feeding with isotonic amino acid solutions. Am J Surg. 1973 Apr;125(4):447–454. doi: 10.1016/0002-9610(73)90080-9. [DOI] [PubMed] [Google Scholar]
  5. Cerra F. B., Siegel J. H., Coleman B., Border J. R., McMenamy R. R. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg. 1980;192(4):570–580. doi: 10.1097/00000658-198010000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clowes G. H., Jr, Randall H. T., Cha C. J. Amino acid and energy metabolism in septic and traumatized patients. JPEN J Parenter Enteral Nutr. 1980 Mar-Apr;4(2):195–205. doi: 10.1177/014860718000400225. [DOI] [PubMed] [Google Scholar]
  7. Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
  8. Foster K. J., Alberti K. G., Binder C., Hinks L., Karran S., Orskov H., Smythe P., Talbot S., Turnell D. Lipid metabolites and nitrogen balance after abdominal surgery in man. Br J Surg. 1979 Apr;66(4):242–245. doi: 10.1002/bjs.1800660407. [DOI] [PubMed] [Google Scholar]
  9. Goodenough R. D., Wolfe R. R. Effect of total parenteral nutrition on free fatty acid metabolism in burned patients. JPEN J Parenter Enteral Nutr. 1984 Jul-Aug;8(4):357–360. doi: 10.1177/0148607184008004357. [DOI] [PubMed] [Google Scholar]
  10. Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. 3. Uptake, release and oxidation of beta-hydroxybutyrate and observations on the beta-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest. 1968;21(4):314–320. doi: 10.3109/00365516809076999. [DOI] [PubMed] [Google Scholar]
  11. Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest. 1968;21(3):263–276. doi: 10.3109/00365516809076994. [DOI] [PubMed] [Google Scholar]
  12. Hartl W., Günther B., Wicklmayr M., Teichmann R., Dietze G. Substrate balances across skeletal muscle tissue in severe sepsis. Clin Nutr. 1984 Dec;3(4):221–226. doi: 10.1016/s0261-5614(84)80048-5. [DOI] [PubMed] [Google Scholar]
  13. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miles J. M., Haymond M. W., Nissen S. L., Gerich J. E. Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest. 1983 Jun;71(6):1554–1561. doi: 10.1172/JCI110911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miles J. M., Nissen S. L., Rizza R. A., Gerich J. E., Haymond M. W. Failure of infused beta-hydroxybutyrate to decrease proteolysis in man. Diabetes. 1983 Mar;32(3):197–205. doi: 10.2337/diab.32.3.197. [DOI] [PubMed] [Google Scholar]
  16. Müller M. J., Paschen U., Seitz H. J. Effect of ketone bodies on glucose production and utilization in the miniature pig. J Clin Invest. 1984 Jul;74(1):249–261. doi: 10.1172/JCI111408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Radcliffe A. G., Wolfe R. R., Colpoys M. F., Muhlbacher F., Wilmore D. W. Ketone-glucose interaction in fed, fasted, and fasted-infected sheep. Am J Physiol. 1983 May;244(5):R667–R675. doi: 10.1152/ajpregu.1983.244.5.R667. [DOI] [PubMed] [Google Scholar]
  18. Robinson A. M., Williamson D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980 Jan;60(1):143–187. doi: 10.1152/physrev.1980.60.1.143. [DOI] [PubMed] [Google Scholar]
  19. Romanosky A. J., McGuinness O. P., Spitzer J. J. Metabolic clearance rate of ketone bodies in dogs following Escherichia coli endotoxin administration. Circ Shock. 1983;11(4):311–318. [PubMed] [Google Scholar]
  20. Ruderman N. B., Goodman M. N. Inhibition of muscle acetoacetate utilization during diabetic ketoacidosis. Am J Physiol. 1974 Jan;226(1):136–143. doi: 10.1152/ajplegacy.1974.226.1.136. [DOI] [PubMed] [Google Scholar]
  21. Ruderman N. B., Goodman M. N. Regulation of ketone body metabolism in skeletal muscle. Am J Physiol. 1973 Jun;224(6):1391–1397. doi: 10.1152/ajplegacy.1973.224.6.1391. [DOI] [PubMed] [Google Scholar]
  22. Seufert C. D., Mewes W., Soeling H. D. Effect of long-term starvation on acetate and ketone body metabolism in obese patients. Eur J Clin Invest. 1984 Apr;14(2):163–170. doi: 10.1111/j.1365-2362.1984.tb02107.x. [DOI] [PubMed] [Google Scholar]
  23. Shaw J. H., Wolfe R. R. Energy and substrate kinetics and oxidation during ketone infusion in septic dogs: role of changes in insulin and glucagon. Circ Shock. 1984;14(1):63–79. [PubMed] [Google Scholar]
  24. Smith R., Fuller D. J., Wedge J. H., Williamson D. H., Alberti K. G. Initial effect of injury on ketone bodies and other blood metabolites. Lancet. 1975 Jan 4;1(7897):1–3. doi: 10.1016/s0140-6736(75)92369-7. [DOI] [PubMed] [Google Scholar]
  25. Watters J. M., Wilmore D. W. Role of catabolic hormones in the hypoketonaemia of injury. Br J Surg. 1986 Feb;73(2):108–110. doi: 10.1002/bjs.1800730210. [DOI] [PubMed] [Google Scholar]
  26. Wicklmayr M., Dietze G., 3rd Effect of continuously increasing concentrations of plasma ketone bodies on the uptake and oxidation of glucose by muscle in man. Eur J Clin Invest. 1978 Dec;8(6):415–421. doi: 10.1111/j.1365-2362.1978.tb00874.x. [DOI] [PubMed] [Google Scholar]
  27. Wicklmayr M., Dietze G. Effect of metaproterenol on ketone body metabolism of the forearm in healthy and diabetic subjects. Horm Metab Res. 1979 Jan;11(1):1–6. doi: 10.1055/s-0028-1092670. [DOI] [PubMed] [Google Scholar]
  28. Williamson D. H. Regulation of ketone body metabolism and the effects of injury. Acta Chir Scand Suppl. 1981;507:22–29. [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES