Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1987 Nov;206(5):655–660. doi: 10.1097/00000658-198711000-00017

Alleviation of cyclosporine nephrotoxicity with verapamil and ATP-MgCl2. Mitochondrial respiratory and calcium studies.

B E Sumpio 1, A E Baue 1, I H Chaudry 1
PMCID: PMC1493310  PMID: 3499878

Abstract

Although recent studies have shown that combined treatment with verapamil and ATP-MgCl2 (ATP) prevents cyclosporine (CyA)-induced nephrotoxicity, the mechanism of these effects remains unknown. To study this, rat kidneys were perfused at 100 mmHg for 100 minutes with Krebs buffer containing 7.5 g/dL of albumin and substrates. After an equilibration period of 30 minutes, 500 ng/mL CyA was added. In some experiments 1 microgram/mL verapamil was added 10 minutes prior to CyA and in others 2 mM ATP was added to CyA. At the end of the perfusion, cortical mitochondria (mito) were isolated and mito Ca2+ and Mg2+ (mumoles/g protein) and respiratory control ratios (RCR) were measured. In addition, total tissue Ca2+ and Mg2+ levels were measured. The results indicate that CyA treatment leads to an accumulation of mito Ca2+ and a decrease in ADP/O ratio. Simultaneous administration of ATP with CyA led to an increased mito Ca2+ accumulation and depressed RCR, which were corrected by verapamil pretreatment. The combination of verapamil pretreatment and ATP cotreatment with CyA increased tissue ATP levels from 0.8 +/- 0.4 (control) to 1.4 +/- 0.1 mumol/g. This pharmacologic regimen may prevent CyA-induced nephrotoxicity by preventing mito Ca2+ accumulation and by preserving mitochondrial respiratory function. This allows a more efficient generation of ATP and consequently preservation of renal function.

Full text

PDF
655

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Carafoli E., Tiozzo R., Pasquali-Ronchetti I., Laschi R. A study of Ca 2+ metabolism in kidney mitochondria during acute uranium intoxication. Lab Invest. 1971 Dec;25(6):516–527. [PubMed] [Google Scholar]
  3. Chaudry I. H., Ohkawa M., Clemens M. G. Improved mitochondrial function following ischemia and reflow by ATP-MgCl2. Am J Physiol. 1984 May;246(5 Pt 2):R799–R804. doi: 10.1152/ajpregu.1984.246.5.R799. [DOI] [PubMed] [Google Scholar]
  4. GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giant mitochondria, renal transplant biopsy, and cyclosporin A. Lancet. 1981 Jul 18;2(8238):146–146. [PubMed] [Google Scholar]
  6. Hayashi H., Chaudry I. H., Clemens M. G., Hull M. J., Baue A. E. Reoxygenation injury in isolated hepatocytes: effect of extracellular ATP on cation homeostasis. Am J Physiol. 1986 Apr;250(4 Pt 2):R573–R579. doi: 10.1152/ajpregu.1986.250.4.R573. [DOI] [PubMed] [Google Scholar]
  7. Humes H. D. Role of calcium in pathogenesis of acute renal failure. Am J Physiol. 1986 Apr;250(4 Pt 2):F579–F589. doi: 10.1152/ajprenal.1986.250.4.F579. [DOI] [PubMed] [Google Scholar]
  8. Maack T. Renal clearance and isolated kidney perfusion techniques. Kidney Int. 1986 Aug;30(2):142–151. doi: 10.1038/ki.1986.166. [DOI] [PubMed] [Google Scholar]
  9. McMillen M. A., Lewis T., Jaffe B. M., Wait R. B. Verapamil inhibition of lymphocyte proliferation and function in vitro. J Surg Res. 1985 Jul;39(1):76–80. doi: 10.1016/0022-4804(85)90164-7. [DOI] [PubMed] [Google Scholar]
  10. O'Donnell D., Rumbak M., Anderson J. Emphysematous pyelonephritis in a transplanted kidney. Clin Nephrol. 1986 Jan;25(1):52–53. [PubMed] [Google Scholar]
  11. Sumpio B. E., Chaudry I. H., Baue A. E. Adenosine triphosphate--magnesium chloride ameliorates reperfusion injury following ischemia as determined by phosphorus nuclear magnetic resonance. Arch Surg. 1985 Feb;120(2):233–240. doi: 10.1001/archsurg.1985.01390260091013. [DOI] [PubMed] [Google Scholar]
  12. Sumpio B. E., Chaudry I. H., Baue A. E. Reduction of the drug-induced nephrotoxicity by ATP-MgCl2. 1. Effects on the cis-diamminedichloroplatinum-treated isolated perfused kidneys. J Surg Res. 1985 May;38(5):429–437. doi: 10.1016/0022-4804(85)90058-7. [DOI] [PubMed] [Google Scholar]
  13. Sumpio B. E., Chaudry I. H., Baue A. E. Reduction of the drug-induced nephrotoxicity by ATP-MgCl2. II. Effects on gentamicin-treated isolated perfused kidneys. J Surg Res. 1985 May;38(5):438–445. doi: 10.1016/0022-4804(85)90059-9. [DOI] [PubMed] [Google Scholar]
  14. Sumpio B. E., Chaudry I. H., Clemens M. G., Baue A. E. Accelerated functional recovery of isolated rat kidney with ATP-MgCl2 after warm ischemia. Am J Physiol. 1984 Dec;247(6 Pt 2):R1047–R1053. doi: 10.1152/ajpregu.1984.247.6.R1047. [DOI] [PubMed] [Google Scholar]
  15. Sumpio B. E., Maack T. Kinetics, competition, and selectivity of tubular absorption of proteins. Am J Physiol. 1982 Oct;243(4):F379–F392. doi: 10.1152/ajprenal.1982.243.4.F379. [DOI] [PubMed] [Google Scholar]
  16. Sumpio B., Baue A. E., Chaudry I. H. Treatment with verapamil and adenosine triphosphate-MgCl2 reduces cyclosporine nephrotoxicity. Surgery. 1987 Mar;101(3):315–322. [PubMed] [Google Scholar]
  17. Weinberg J. M., Harding P. G., Humes H. D. Alterations in renal cortex cation homeostasis during mercuric chloride and gentamicin nephrotoxicity. Exp Mol Pathol. 1983 Aug;39(1):43–60. doi: 10.1016/0014-4800(83)90040-0. [DOI] [PubMed] [Google Scholar]
  18. Weinberg J. M., Harding P. G., Humes H. D. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. II. Functional alterations of renal cortical mitochondria isolated after mercuric chloride treatment. J Biol Chem. 1982 Jan 10;257(1):68–74. [PubMed] [Google Scholar]
  19. Whiting P. H., Thomson A. W., Blair J. T., Simpson J. G. Experimental cyclosporin A nephrotoxicity. Br J Exp Pathol. 1982 Feb;63(1):88–94. [PMC free article] [PubMed] [Google Scholar]
  20. Wilson D. R., Arnold P. E., Burke T. J., Schrier R. W. Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int. 1984 Mar;25(3):519–526. doi: 10.1038/ki.1984.48. [DOI] [PubMed] [Google Scholar]
  21. Zoccarato F., Rugolo M., Siliprandi D., Siliprandi N. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate. Eur J Biochem. 1981 Feb;114(2):195–199. doi: 10.1111/j.1432-1033.1981.tb05136.x. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES