Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1988 Apr;207(4):421–429. doi: 10.1097/00000658-198804000-00009

A kinetic study of leucine metabolism in severely burned patients. Comparison between a conventional and branched-chain amino acid-enriched nutritional therapy.

Y M Yu 1, D A Wagner 1, J C Walesreswski 1, J F Burke 1, V R Young 1
PMCID: PMC1493431  PMID: 3128190

Abstract

A cross-over design study was used to examine the metabolic consequences of enteral feeding for 48 to 96 hours with either a branched-chain amino acid (BCAA)-enriched (44% BCAA) or a conventional egg protein formulation in 12 severely burned adult patients. A stable isotope labeled leucine (L-1-13C-leucine) tracer approach was used to measure leucine flux and oxidation and to estimate rates of whole body protein synthesis and breakdown. Additionally, 15N2-urea and 6,6-2H-glucose were administered to assess the status of urea and glucose kinetics with these two nutritional treatments. Average patient age was 54 years, and average burn surface area was 36%. Studies were conducted at an average of 25 days postburn. Leucine flux and oxidation were significantly (p less than 0.01, by paired t-test) elevated with BCAA feeding as compared to the egg protein formulation. However, there were no significant differences in the rates of leucine incorporation into, or release from, proteins (p greater than 0.05) between the two dietary periods. Mean rates of body protein synthesis and breakdown for each diet were about twice the rates reported for healthy young adults. Apparent nitrogen balance measurements were not statistically different (p greater than 0.1) between the two diet periods. Furthermore, urea and glucose kinetics failed to show significant differences between the two diet periods. It appears from these results that the major consequences of increased intake of leucine from the BCAA formula is an enhanced rate of leucine oxidation. In conclusion, (1) the availability of BCAAs is not rate-limiting for enhanced protein synthesis in burn patients, and (2) the use of enriched BCAA formulas in burn therapy does not appear to offer advantages over a routinely used enteral egg protein formula, at least based on the present determinations.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. F. Determination of amino acid profiles in biological samples by gas chromatography. J Chromatogr. 1974 Aug 14;95(2):189–212. doi: 10.1016/s0021-9673(00)84078-9. [DOI] [PubMed] [Google Scholar]
  2. Askanazi J., Carpentier Y. A., Michelsen C. B., Elwyn D. H., Furst P., Kantrowitz L. R., Gump F. E., Kinney J. M. Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg. 1980 Jul;192(1):78–85. doi: 10.1097/00000658-198007000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Askanazi J., Furst P., Michelsen C. B., Elwyn D. H., Vinnars E., Gump F. E., Stinchfield F. E., Kinney J. M. Muscle and plasma amino acids after injury: hypocaloric glucose vs. amino acid infusion. Ann Surg. 1980 Apr;191(4):465–472. doi: 10.1097/00000658-198004000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bier D. M., Leake R. D., Haymond M. W., Arnold K. J., Gruenke L. D., Sperling M. A., Kipnis D. M. Measurement of "true" glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes. 1977 Nov;26(11):1016–1023. doi: 10.2337/diab.26.11.1016. [DOI] [PubMed] [Google Scholar]
  5. Bistrian B. R. A simple technique to estimate severity of stress. Surg Gynecol Obstet. 1979 May;148(5):675–678. [PubMed] [Google Scholar]
  6. Brennan M. F., Cerra F., Daly J. M., Fischer J. E., Moldawer L. L., Smith R. J., Vinnars E., Wannemacher R., Young V. R. Report of a research workshop: branched-chain amino acids in stress and injury. JPEN J Parenter Enteral Nutr. 1986 Sep-Oct;10(5):446–452. doi: 10.1177/0148607186010005446. [DOI] [PubMed] [Google Scholar]
  7. Burke J. F., Wolfe R. R., Mullany C. J., Mathews D. E., Bier D. M. Glucose requirements following burn injury. Parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg. 1979 Sep;190(3):274–285. doi: 10.1097/00000658-197909000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buse M. G., Reid S. S. Leucine. A possible regulator of protein turnover in muscle. J Clin Invest. 1975 Nov;56(5):1250–1261. doi: 10.1172/JCI108201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cerra F. B., Mazuski J. E., Chute E., Nuwer N., Teasley K., Lysne J., Shronts E. P., Konstantinides F. N. Branched chain metabolic support. A prospective, randomized, double-blind trial in surgical stress. Ann Surg. 1984 Mar;199(3):286–291. doi: 10.1097/00000658-198403000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cerra F. B., Shronts E. P., Konstantinides N. N., Thoele S., Konstantinides F. N., Teasley K., Lysne J. Enteral feeding in sepsis: a prospective, randomized, double-blind trial. Surgery. 1985 Oct;98(4):632–639. [PubMed] [Google Scholar]
  11. Cerra F. B., Siegel J. H., Coleman B., Border J. R., McMenamy R. R. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg. 1980;192(4):570–580. doi: 10.1097/00000658-198010000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chang T. W., Goldberg A. L. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fasting. J Biol Chem. 1978 May 25;253(10):3696–3701. [PubMed] [Google Scholar]
  13. Clowes G. H., Jr, O'Donnell T. F., Blackburn G. L., Maki T. N. Energy metabolism and proteolysis in traumatized and septic man. Surg Clin North Am. 1976 Oct;56(5):1169–1184. doi: 10.1016/s0039-6109(16)41036-4. [DOI] [PubMed] [Google Scholar]
  14. Desai S. P., Bistrian B. R., Moldawer L. L., Miller M. M., Blackburn G. L. Plasma amino acid concentrations during branched-chain amino acid infusions in stressed patients. J Trauma. 1982 Sep;22(9):747–752. doi: 10.1097/00005373-198209000-00005. [DOI] [PubMed] [Google Scholar]
  15. Echenique M. M., Bistrian B. R., Moldawer L. L., Palombo J. D., Miller M. M., Blackburn G. L. Improvement in amino acid use in the critically ill patient with parenteral formulas enriched with branched chain amino acids. Surg Gynecol Obstet. 1984 Sep;159(3):233–241. [PubMed] [Google Scholar]
  16. Elia M., Farrell R., Ilic V., Smith R., Williamson D. H. The removal of infused leucine after injury, starvation and other conditions in man. Clin Sci (Lond) 1980 Oct;59(4):275–283. doi: 10.1042/cs0590275. [DOI] [PubMed] [Google Scholar]
  17. Freund H., Hoover H. C., Jr, Atamian S., Fischer J. E. Infusion of the branched chain amino acids in postoperative patients. Anticatabolic properties. Ann Surg. 1979 Jul;190(1):18–23. doi: 10.1097/00000658-197907000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fürst P. Intracellular muscle free amino acids--their measurement and function. Proc Nutr Soc. 1983 Sep;42(3):451–462. doi: 10.1079/pns19830052. [DOI] [PubMed] [Google Scholar]
  19. Hagenfeldt L., Eriksson S., Wahren J. Influence of leucine on arterial concentrations and regional exchange of amino acids in healthy subjects. Clin Sci (Lond) 1980 Sep;59(3):173–181. doi: 10.1042/cs0590173. [DOI] [PubMed] [Google Scholar]
  20. Hedden M. P., Buse M. G. General stimulation of muscle protein synthesis by branched chain amino acids in vitro. Proc Soc Exp Biol Med. 1979 Apr;160(4):410–415. doi: 10.3181/00379727-160-40460. [DOI] [PubMed] [Google Scholar]
  21. Matthews D. E., Ben-Galim E., Bier D. M. Determination of stable isotopic enrichment in individual plasma amino acids by chemical ionization mass spectrometry. Anal Chem. 1979 Jan;51(1):80–84. doi: 10.1021/ac50037a028. [DOI] [PubMed] [Google Scholar]
  22. Matthews D. E., Motil K. J., Rohrbaugh D. K., Burke J. F., Young V. R., Bier D. M. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[1-3C]leucine. Am J Physiol. 1980 May;238(5):E473–E479. doi: 10.1152/ajpendo.1980.238.5.E473. [DOI] [PubMed] [Google Scholar]
  23. McNurlan M. A., Fern E. B., Garlick P. J. Failure of leucine to stimulate protein synthesis in vivo. Biochem J. 1982 Jun 15;204(3):831–838. doi: 10.1042/bj2040831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Millikan W. J., Jr, Henderson J. M., Galloway J. R., Warren W. D., Matthews D. E., McGhee A., Kutner M. H. In vivo measurement of leucine metabolism with stable isotopes in normal subjects and in those with cirrhosis fed conventional and branched-chain amino acid-enriched diets. Surgery. 1985 Sep;98(3):405–413. [PubMed] [Google Scholar]
  25. Rennie M. J., Edwards R. H., Halliday D., Matthews D. E., Wolman S. L., Millward D. J. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 1982 Dec;63(6):519–523. doi: 10.1042/cs0630519. [DOI] [PubMed] [Google Scholar]
  26. Rennie M. J., Edwards R. H., Millward D. J., Wolman S. L., Halliday D., Matthews D. E. Effects of Duchenne muscular dystrophy on muscle protein synthesis. Nature. 1982 Mar 11;296(5853):165–167. doi: 10.1038/296165a0. [DOI] [PubMed] [Google Scholar]
  27. Ryan N. T. Metabolic adaptations for energy production during trauma and sepsis. Surg Clin North Am. 1976 Oct;56(5):1073–1090. doi: 10.1016/s0039-6109(16)41032-7. [DOI] [PubMed] [Google Scholar]
  28. Schwarz H. P., Karl I. E., Bier D. M. The alpha-keto acids of branched-chain amino acids: simplified derivatization for physiological samples and complete separation as quinoxalinols by packed column gas chromatography. Anal Biochem. 1980 Nov 1;108(2):360–366. doi: 10.1016/0003-2697(80)90600-4. [DOI] [PubMed] [Google Scholar]
  29. Waterlow J. C. Protein turnover with special reference to man. Q J Exp Physiol. 1984 Jul;69(3):409–438. doi: 10.1113/expphysiol.1984.sp002829. [DOI] [PubMed] [Google Scholar]
  30. Wilmore D. W., Long J. M., Mason A. D., Jr, Skreen R. W., Pruitt B. A., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974 Oct;180(4):653–669. doi: 10.1097/00000658-197410000-00031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wolfe R. R., Goodenough R. D., Burke J. F., Wolfe M. H. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg. 1983 Feb;197(2):163–171. doi: 10.1097/00000658-198302000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolfe R. R. Measurement of urea kinetics in vivo by means of a constant tracer infusion of di-15N-urea. Am J Physiol. 1981 Apr;240(4):E428–E434. doi: 10.1152/ajpendo.1981.240.4.E428. [DOI] [PubMed] [Google Scholar]
  33. Woolfson A. M. Amino acids--their role as an energy source. Proc Nutr Soc. 1983 Sep;42(3):489–495. doi: 10.1079/pns19830055. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES