Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1988 Jul;208(1):78–84. doi: 10.1097/00000658-198807000-00011

Decreased neutrophil thromboxane A2 and endothelial PGI2 production in the postoperative period. An in vitro assay for detection of neutrophil and plasma dysfunction.

M M Krausz 1, Z Hartzstark 1, Z Shlomai 1, D Gross 1, Y Matzner 1, A Eldor 1, I Vlodavsky 1, H B Bassat 1
PMCID: PMC1493567  PMID: 3291801

Abstract

Severe trauma results in reversible abnormalities in neutrophil function, but the specific role in the pathogenesis of postoperative sepsis is undetermined. Twenty adult patients undergoing elective surgical procedures were studied. Blood samples were obtained prior to and 24 hours after operation. Blood neutrophils were isolated and incubated (10(7) cells/mL) on bovine vascular endothelial cell monolayers. Untreated plasma or zymosan-activated plasma (ZAP) or 65 C inactivated plasma was added, and TxB2 and 6-keto PGF1 alpha production measured after 2 hours. Endothelial damage was detected by light and scanning electron microscopy beginning 2 and 4 hours after treatment. Preoperatively, neutrophil TxB2 release was less than 200 pg/mL; following ZAP it was 2153 pg/mL (p less than 0.001), with untreated plasma 1055 pg/mL (p less than 0.005) and inactivated plasma 764 pg/mL (p less than 0.01). Neutrophil TxB2 release on a plastic dish was not different from incubation on endothelium. Endothelial 6-keto PGF1 alpha release following addition of untreated plasma preoperatively was 1308 pg/mL (p less than 0.01), and with ZAP 1305 pg/mL (p less than 0.01). Activated neutrophils did not alter 6-keto PGF1 alpha production. Postoperatively, neutrophil TxB2 production in response to ZAP was 1092 pg/mL, which was significantly reduced compared to the preoperative response (p less than 0.01). Endothelial damage by activated neutrophils in the postoperative period demonstrated on scanning electron microscopy was also reduced; 6-keto PGF1 alpha release in the postoperative period inducted by ZAP was 569 pg/mL and by untreated plasma 549 pg/mL, which was significantly lower than in the preoperative period (p less than 0.05 and p less than 0.05, respectively). No difference in chemotaxis was demonstrated. It is concluded that operative trauma is followed by lowered neutrophil TxB2 release, appearance of a plasmatic factor that depresses endothelial 6-keto PGF1 alpha production, as well as decreased neutrophil-induced endothelial damage. The neutrophil-endothelial monolayer system is a sensitive method for detection of neutrophil and plasmatic dysfunction.

Full text

PDF
78

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. W., Hegg M., Altemeier W. A. Neutrophil function in selected surgical disorders. Ann Surg. 1968 Sep;168(3):447–458. doi: 10.1097/00000658-196809000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander J. W., Stinnett J. D., Ogle C. K., Ogle J. D., Morris M. J. A comparison of immunologic profiles and their influence on bacteremia in surgical patients with a high risk of infection. Surgery. 1979 Jul;86(1):94–104. [PubMed] [Google Scholar]
  3. Boogaerts M. A., Yamada O., Jacob H. S., Moldow C. F. Enhancement of granulocyte-endothelial cell adherence and granulocyte-induced cytotoxicity by platelet release products. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7019–7023. doi: 10.1073/pnas.79.22.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christou N. V., McLean A. P., Meakins J. L. Host defense in blunt trauma: interrelationships of kinetics of anergy and depressed neutrophil function, nutritional status, and sepsis. J Trauma. 1980 Oct;20(10):833–841. doi: 10.1097/00005373-198010000-00003. [DOI] [PubMed] [Google Scholar]
  5. Christou N. V., Meakins J. L. Neutrophil function in surgical patients: two inhibitors of granulocyte chemotaxis associated with sepsis. J Surg Res. 1979 Apr;26(4):355–364. doi: 10.1016/0022-4804(79)90020-9. [DOI] [PubMed] [Google Scholar]
  6. Conolly W. B., Hunt T. K., Sonne M., Dunphy J. E. Influence of distant trauma on local wound infection. Surg Gynecol Obstet. 1969 Apr;128(4):713–718. [PubMed] [Google Scholar]
  7. Crowley C. A., Curnutte J. T., Rosin R. E., André-Schwartz J., Gallin J. I., Klempner M., Snyderman R., Southwick F. S., Stossel T. P., Babior B. M. An inherited abnormality of neutrophil adhesion. Its genetic transmission and its association with a missing protein. N Engl J Med. 1980 May 22;302(21):1163–1168. doi: 10.1056/NEJM198005223022102. [DOI] [PubMed] [Google Scholar]
  8. Dunham B., Shepro D., Hechtman H. B. Leukotriene induction of TxB2 in cultured bovine aortic endothelial cells. Inflammation. 1984 Sep;8(3):313–321. doi: 10.1007/BF00916419. [DOI] [PubMed] [Google Scholar]
  9. Goldstein I. M., Malmsten C. L., Kindahl H., Kaplan H. B., Rådmark O., Samuelsson B., Weissmann G. Thromboxane generation by human peripheral blood polymorphonuclear leukocytes. J Exp Med. 1978 Sep 1;148(3):787–792. doi: 10.1084/jem.148.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gospodarowicz D., Bialecki H., Greenburg G. Purification of the fibroblast growth factor activity from bovine brain. J Biol Chem. 1978 May 25;253(10):3736–3743. [PubMed] [Google Scholar]
  11. Gospodarowicz D., Moran J., Braun D., Birdwell C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4120–4124. doi: 10.1073/pnas.73.11.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hechtman H. B., Huval W. V., Mathieson M. A., Stemp L. I., Valeri C. R., Shepro D. Prostaglandin and thromboxane mediation of cardiopulmonary failure. Surg Clin North Am. 1983 Apr;63(2):263–283. doi: 10.1016/s0039-6109(16)42981-6. [DOI] [PubMed] [Google Scholar]
  13. Jacob H. S., Craddock P. R., Hammerschmidt D. E., Moldow C. F. Complement-induced granulocyte aggregation: an unsuspected mechanism of disease. N Engl J Med. 1980 Apr 3;302(14):789–794. doi: 10.1056/NEJM198004033021407. [DOI] [PubMed] [Google Scholar]
  14. Kaplan J. E., Saba T. M. Humoral deficiency and reticuloendothelial depression after traumatic shock. Am J Physiol. 1976 Jan;230(1):7–14. doi: 10.1152/ajplegacy.1976.230.1.7. [DOI] [PubMed] [Google Scholar]
  15. Lanser M. E., Mao P., Brown G., Coleman B., Siegel J. H. Serum-mediated depression of neutrophil chemiluminescence following blunt trauma. Ann Surg. 1985 Jul;202(1):111–118. doi: 10.1097/00000658-198507000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MARCHESI V. T. SOME ELECTRON MICROSCOPIC OBSERVATIONS ON INTERACTIONS BETWEEN LEUKOCYTES, PLATELETS, AND ENDOTHELIAL CELLS IN ACUTE INFLAMMATION. Ann N Y Acad Sci. 1964 Aug 27;116:774–788. doi: 10.1111/j.1749-6632.1964.tb52545.x. [DOI] [PubMed] [Google Scholar]
  17. Maderazo E. G., Albano S. D., Woronick C. L., Drezner A. D., Quercia R. Polymorphonuclear leukocyte migration abnormalities and their significance in seriously traumatized patients. Ann Surg. 1983 Dec;198(6):736–742. doi: 10.1097/00000658-198312000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matzner Y., Partridge R. E., Babior B. M. A chemotactic inhibitor in synovial fluid. Immunology. 1983 May;49(1):131–138. [PMC free article] [PubMed] [Google Scholar]
  19. Moore F. D., Jr, Davis C., Rodrick M., Mannick J. A., Fearon D. T. Neutrophil activation in thermal injury as assessed by increased expression of complement receptors. N Engl J Med. 1986 Apr 10;314(15):948–953. doi: 10.1056/NEJM198604103141503. [DOI] [PubMed] [Google Scholar]
  20. Polliack A., Prokocimer M., Or R., Korkesh A., Leizerowitz R., Ben-Bassat H., Gamliel H. Use of multiparameter studies and scanning electron microscopy in the interpretation and attempted correlation of surface morphology with cell type in 135 cases of human leukemias. Cancer Res. 1981 Mar;41(3):1171–1179. [PubMed] [Google Scholar]
  21. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spagnuolo P. J., Ellner J. J., Hassid A., Dunn M. J. Thromboxane A2 mediates augmented polymorphonuclear leukocyte adhesiveness. J Clin Invest. 1980 Sep;66(3):406–414. doi: 10.1172/JCI109870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spagnuolo P. J., Ellner J. J. Salicylate blockade of granulocyte adherence and the inflammatory response to experimental peritonitis. Blood. 1979 May;53(5):1018–1022. [PubMed] [Google Scholar]
  24. Wang B. S., Heacock E. H., Mannick J. A. Characterization of suppressor cells generated in mice after surgical trauma. Clin Immunol Immunopathol. 1982 Aug;24(2):161–170. doi: 10.1016/0090-1229(82)90227-6. [DOI] [PubMed] [Google Scholar]
  25. Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
  26. Weksler B. B., Marcus A. J., Jaffe E. A. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3922–3926. doi: 10.1073/pnas.74.9.3922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES