Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1988 Jul;208(1):110–117. doi: 10.1097/00000658-198807000-00016

Assessment of the intrinsic contractile status of the heart during sepsis by myocardial pressure-dimension analysis.

M K Pasque 1, P Van Trigt 1, G L Pellom 1, B M Freedman 1, A S Wechsler 1
PMCID: PMC1493574  PMID: 3389942

Abstract

The effect of sepsis on the intrinsic contractile status of the myocardium is best examined in the awake, closed-chest animal with intact circulation because anesthesia, open thoracotomy, and circulatory support are all known to affect hemodynamics. To fulfill these criteria, 18 adult dogs were chronically studied in the awake state after instrumentation with left ventricular high-fidelity pressure catheters and ultrasonic dimension transducers to measure left ventricular transmural pressure and minor axis dimension. This allowed computer assessment of the left ventricular end-systolic pressure-dimension relationship in the control state and at intervals following cecal ligation in one group of dogs. A second group of control animals was studied over variable time intervals without cecal ligation to evaluate the temporal stability and reproducibility of the animal model and the end-systolic pressure-dimension relationship. Evaluation of contractility by use of the end-systolic pressure-dimension relationship was essential because this relationship is a sensitive indicator of the intrinsic myocardial contractile state while remaining insensitive to the wide swings in preload and after load that are commonly seen in sepsis. In the control group of dogs, the temporal consistency and stability of the end-systolic pressure-dimension relationship in this model was confirmed; no significant changes in the slope and dimension-axis intercept were demonstrated over the study interval. In the septic group of dogs, however, the intrinsic myocardial contractility significantly deteriorated as the mean slope of the end-systolic pressure-dimension relationship (mmHg/mm) decreased from 16.87 +/- 0.85 to 12.79 +/- 1.67 over 120 hours following cecal ligation. Intrinsic contractility of the heart during sepsis was therefore isolated for the first time from the widely variant loading conditions seen during sepsis by pressure-dimension analyses in the chronically instrumented, awake, closed-chest canine with intact circulation.

Full text

PDF
110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel F. L. Maximal negative dP/dt as an indicator of end of systole. Am J Physiol. 1981 Apr;240(4):H676–H679. doi: 10.1152/ajpheart.1981.240.4.H676. [DOI] [PubMed] [Google Scholar]
  2. Borow K. M., Neumann A., Wynne J. Sensitivity of end-systolic pressure-dimension and pressure-volume relations to the inotropic state in humans. Circulation. 1982 May;65(5):988–997. doi: 10.1161/01.cir.65.5.988. [DOI] [PubMed] [Google Scholar]
  3. Cann M., Stevenson T., Fiallos E., Thal A. P. Depressed cardiac performance in sepsis. Surg Gynecol Obstet. 1972 May;134(5):759–763. [PubMed] [Google Scholar]
  4. Carabello B. A., Nolan S. P., McGuire L. B. Assessment of preoperative left ventricular function in patients with mitral regurgitation: value of the end-systolic wall stress-end-systolic volume ratio. Circulation. 1981 Dec;64(6):1212–1217. doi: 10.1161/01.cir.64.6.1212. [DOI] [PubMed] [Google Scholar]
  5. Carabello B. A., Spann J. F. The uses and limitations of end-systolic indexes of left ventricular function. Circulation. 1984 May;69(5):1058–1064. doi: 10.1161/01.cir.69.5.1058. [DOI] [PubMed] [Google Scholar]
  6. Carli A., Auclair M. C., Bleichner G., Weber S., Lechat P., Monsallier J. F. Inhibited response to isoproterenol and altered action potential of beating rat heart cells by human serum in septic shock. Circ Shock. 1978;5(1):85–94. [PubMed] [Google Scholar]
  7. Carli A., Auclair M. C., Vernimmen C., Jourdon P. Reversal by calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock. 1979;6(2):147–147. [PubMed] [Google Scholar]
  8. Cavanagh D., Rao P. S., Sutton D. M., Bhagat B. D., Bachmann F. Pathophysiology of endotoxin shock in the primate. Am J Obstet Gynecol. 1970 Nov 1;108(5):705–722. doi: 10.1016/0002-9378(70)90535-1. [DOI] [PubMed] [Google Scholar]
  9. Clowes G. H., Jr, O'Donnell T. F., Jr, Ryan N. T., Blackburn G. L. Energy metabolism in sepsis: treatment based on different patterns in shock and high output stage. Ann Surg. 1974 May;179(5):684–696. doi: 10.1097/00000658-197405000-00023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clowes G. H., Jr, Vucinic M., Weidner M. G. Circulatory and metabolic alterations associated with survival or death in peritonitis: clinical analysis of 25 cases. Ann Surg. 1966 Jun;163(6):866–885. doi: 10.1097/00000658-196606000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DUFF J. H., MALAVE G., PERETZ D. I., SCOTT H. M., MACLEAN L. D. THE HEMODYNAMICS OF SEPTIC SHOCK IN MAN AND IN THE DOG. Surgery. 1965 Jul;58:174–184. [PubMed] [Google Scholar]
  12. Duff J. H., Groves A. C., McLean A. P., LaPointe R., MacLean L. D. Defective oxygen consumption in septic shock. Surg Gynecol Obstet. 1969 May;128(5):1051–1060. [PubMed] [Google Scholar]
  13. Geocaris T. V., Quebbéman E., Dewoskin R., Moss G. S. Effects of gram negative endotoxemia on myocardial contractility in the awake primate. Ann Surg. 1973 Dec;178(6):715–720. doi: 10.1097/00000658-197312000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldfarb R. D., Nightingale L. M., Kish P., Weber P. B., Loegering D. J. Left ventricular function during lethal and sublethal endotoxemia in swine. Am J Physiol. 1986 Aug;251(2 Pt 2):H364–H373. doi: 10.1152/ajpheart.1986.251.2.H364. [DOI] [PubMed] [Google Scholar]
  15. Goodyer A. V. Left ventricular function and tissue hypoxia in irreversible hemorrhagic and endotoxin shock. Am J Physiol. 1967 Feb;212(2):444–450. doi: 10.1152/ajplegacy.1967.212.2.444. [DOI] [PubMed] [Google Scholar]
  16. Grossman W., Braunwald E., Mann T., McLaurin L. P., Green L. H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977 Nov;56(5):845–852. doi: 10.1161/01.cir.56.5.845. [DOI] [PubMed] [Google Scholar]
  17. Gump F. E., Price J. B., Jr, Kinney J. M. Whole body and splanchnic blood flow and oxygen consumption measurements in patients with intraperitoneal infection. Ann Surg. 1970 Mar;171(3):321–328. doi: 10.1097/00000658-197003000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HINSHAW L. B., BRAKE C. M., EMERSON T. E., Jr, JORDAN M. M., MASUCCI F. D. PARTICIPATION OF SYMPATHOADRENAL SYSTEM IN ENDOTOXIN SHOCK. Am J Physiol. 1964 Oct;207:925–930. doi: 10.1152/ajplegacy.1964.207.4.925. [DOI] [PubMed] [Google Scholar]
  19. Hermreck A. S., Thal A. P. Mechanisms for the high circulatory requirements in sepsis and septic shock. Ann Surg. 1969 Oct;170(4):677–695. doi: 10.1097/00000658-196910000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hess M. L., Soulsby M. E., Davis J. A., Briggs F. N. The influence of venous return on cardiac mechanical and sarcoplasmic reticulum function during endotoxemia. Circ Shock. 1977;4(2):143–152. [PubMed] [Google Scholar]
  21. Hinshaw L. B., Archer L. T., Black M. R., Elkins R. C., Brown P. P., Greenfield L. J. Myocardial function in shock. Am J Physiol. 1974 Feb;226(2):357–366. doi: 10.1152/ajplegacy.1974.226.2.357. [DOI] [PubMed] [Google Scholar]
  22. Hinshaw L. B., Archer L. T., Black M. R., Greenfield L. J., Guenter C. A. Prevention and reversal of myocardial failure in endotoxin shock. Surg Gynecol Obstet. 1973 Jan;136(1):1–11. [PubMed] [Google Scholar]
  23. Hinshaw L. B., Archer L. T., Greenfield L. J., Guenter C. A. Effects of endotoxin on myocardial hemodynamics, performance, and metabolism. Am J Physiol. 1971 Aug;221(2):504–510. doi: 10.1152/ajplegacy.1971.221.2.504. [DOI] [PubMed] [Google Scholar]
  24. Hinshaw L. B., Greenfield L. J., Owen S. E., Black M. R., Guenter C. A. Precipitation of cardiac failure in endotoxin shock. Surg Gynecol Obstet. 1972 Jul;135(1):39–48. [PubMed] [Google Scholar]
  25. Hinshaw L. B. Myocardial function in endotoxin shock. Circ Shock Suppl. 1979;1:43–51. [PubMed] [Google Scholar]
  26. Hinshaw L. B., Solomon L. A., Holmes D. D., Greenfield L. J. Comparison of canine responses to Escherichia coli organisms and endotoxin. Surg Gynecol Obstet. 1968 Nov;127(5):981–988. [PubMed] [Google Scholar]
  27. Kutner F. R., Cohen J. Effect of endotoxin on isolated cat papillary muscle. J Surg Res. 1966 Feb;6(2):83–86. doi: 10.1016/s0022-4804(66)80076-8. [DOI] [PubMed] [Google Scholar]
  28. Levin J. Endotoxin and endotoxemia. N Engl J Med. 1973 Jun 14;288(24):1297–1298. doi: 10.1056/NEJM197306142882411. [DOI] [PubMed] [Google Scholar]
  29. MacLean L. D., Mulligan W. G., McLean A. P., Duff J. H. Patterns of septic shock in man--a detailed study of 56 patients. Ann Surg. 1967 Oct;166(4):543–562. doi: 10.1097/00000658-196710000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Macnicol M. F., Goldberg A. H., Clowes G. H., Jr Depression of isolated heart muscle by bacterial endotoxin. J Trauma. 1973 Jun;13(6):554–558. doi: 10.1097/00005373-197306000-00010. [DOI] [PubMed] [Google Scholar]
  31. Maksad A. K., Cha C. J., Stuart R. C., Brosco F. A., Clowes G. H., Jr Myocardial depression in septic shock: physiologic and metabolic effects of a plasma factor on an isolated heart. Circ Shock Suppl. 1979;1:35–42. [PubMed] [Google Scholar]
  32. Martinez L. A., Quintiliani R., Tilton R. C. Clinical experience on the detection of endotoxemia with the limulus test. J Infect Dis. 1973 Jan;127(1):102–105. doi: 10.1093/infdis/127.1.102. [DOI] [PubMed] [Google Scholar]
  33. McCaig D. J., Kane K. A., Bailey G., Millington P. F., Parratt J. R. Myocardial function in feline endotoxin shock: a correlation between myocardial contractility, electrophysiology, and ultrastructure. Circ Shock. 1979;6(3):201–211. [PubMed] [Google Scholar]
  34. McConn R., Greineder J. K., Wasserman F., Clowes G. H., Jr Is there a humoral factor that depresses ventricular function in sepsis? Circ Shock Suppl. 1979;1:9–22. [PubMed] [Google Scholar]
  35. McKay R. G., Miller M. J., Ferguson J. J., Momomura S., Sahagian P., Grossman W., Pasternak R. C. Assessment of left ventricular end-systolic pressure-volume relations with an impedance catheter and transient inferior vena cava occlusion: use of this system in the evaluation of the cardiotonic effects of dobutamine, milrinone, Posicor and epinephrine. J Am Coll Cardiol. 1986 Nov;8(5):1152–1160. doi: 10.1016/s0735-1097(86)80395-3. [DOI] [PubMed] [Google Scholar]
  36. NYKIEL F., GLAVIANO V. V. Adrenal catecholamines in E. coli endotoxin shock. J Appl Physiol. 1961 Mar;16:348–350. doi: 10.1152/jappl.1961.16.2.348. [DOI] [PubMed] [Google Scholar]
  37. Natanson C., Fink M. P., Ballantyne H. K., MacVittie T. J., Conklin J. J., Parrillo J. E. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest. 1986 Jul;78(1):259–270. doi: 10.1172/JCI112559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Donnel T. F., Clowes G. H., Jr, Blackburn G. L., Ryan N. T., Benotti P. N., Miller J. D. Proteolysis associated with a deficit of peripheral energy fuel substrates in septic man. Surgery. 1976 Aug;80(2):192–200. [PubMed] [Google Scholar]
  39. O'Donnell T. F., Jr, Clowes G. H., Jr, Ryan N. T., Blackburn G. L., Weisser A. Experimental endotoxemia: does it simultate metabolism in septic shock? Surg Forum. 1975;26:25–26. [PubMed] [Google Scholar]
  40. Parrillo J. E., Burch C., Shelhamer J. H., Parker M. M., Natanson C., Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest. 1985 Oct;76(4):1539–1553. doi: 10.1172/JCI112135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rankin J. S., Arentzen C. E., Ring W. S., Edwards C. H., 2nd, McHale P. A., Anderson R. W. The diastolic mechanical properties of the intact left ventricle. Fed Proc. 1980 Feb;39(2):141–147. [PubMed] [Google Scholar]
  42. Rankin J. S., McHale P. A., Arentzen C. E., Ling D., Greenfield J. C., Jr, Anderson R. W. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res. 1976 Sep;39(3):304–313. doi: 10.1161/01.res.39.3.304. [DOI] [PubMed] [Google Scholar]
  43. Sagawa K., Suga H., Shoukas A. A., Bakalar K. M. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977 Nov;40(5):748–753. doi: 10.1016/0002-9149(77)90192-8. [DOI] [PubMed] [Google Scholar]
  44. Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981 Jun;63(6):1223–1227. doi: 10.1161/01.cir.63.6.1223. [DOI] [PubMed] [Google Scholar]
  45. Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978 Nov;43(5):677–687. doi: 10.1161/01.res.43.5.677. [DOI] [PubMed] [Google Scholar]
  46. Siegel J. H., Cerra F. B., Coleman B., Giovannini I., Shetye M., Border J. R., McMenamy R. H. Physiological and metabolic correlations in human sepsis. Invited commentary. Surgery. 1979 Aug;86(2):163–193. [PubMed] [Google Scholar]
  47. Siegel J. H., Greenspan M., Del Guercio L. R. Abnormal vascular tone, defective oxygen transport and myocardial failure in human septic shock. Ann Surg. 1967 Apr;165(4):504–517. doi: 10.1097/00000658-196704000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Solis R. T., Downing S. E. Effects of E. coli endotoxemia on ventricular performance. Am J Physiol. 1966 Aug;211(2):307–313. doi: 10.1152/ajplegacy.1966.211.2.307. [DOI] [PubMed] [Google Scholar]
  49. Soulsby M. E., Bruni F. D., Looney T. J., Hess M. L. Influence of endotoxin on myocardial calcium transport and the effect of augmented venous return. Circ Shock. 1978;5(1):23–34. [PubMed] [Google Scholar]
  50. Stumacher R. J., Kovnat M. J., McCabe W. R. Limitations of the usefulness of the Limulus assay for endotoxin. N Engl J Med. 1973 Jun 14;288(24):1261–1264. doi: 10.1056/NEJM197306142882402. [DOI] [PubMed] [Google Scholar]
  51. Suga H., Sagawa K., Shoukas A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar;32(3):314–322. doi: 10.1161/01.res.32.3.314. [DOI] [PubMed] [Google Scholar]
  52. WAISBREN B. A. GRAM-NEGATIVE SHOCK AND ENDOTOXIN SHOCK. Am J Med. 1964 Jun;36:819–824. doi: 10.1016/0002-9343(64)90111-1. [DOI] [PubMed] [Google Scholar]
  53. Weisul J. P., O'Donnell T. F., Jr, Stone M. A., Clowes G. H., Jr Myocardial performance in clinical septic shock: effects of isoproterenol and glucose potassium insulin. J Surg Res. 1975 Apr;18(4):357–363. doi: 10.1016/0022-4804(75)90094-3. [DOI] [PubMed] [Google Scholar]
  54. Wright C. J., Duff J. H., McLean A. P., MacLean L. D. Regional capillary blood flow and oxygen uptake in severe sepsis. Surg Gynecol Obstet. 1971 Apr;132(4):637–644. [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES