Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1988 Jul;208(1):71–77. doi: 10.1097/00000658-198807000-00010

Pancreatitis-induced acute lung injury. An ARDS model.

K S Guice 1, K T Oldham 1, K J Johnson 1, R G Kunkel 1, M L Morganroth 1, P A Ward 1
PMCID: PMC1493579  PMID: 3389946

Abstract

Cerulein-induced acute pancreatitis in rats is associated with acute lung injury characterized by increased pulmonary microvascular permeability, increased wet lung weights, and histologic features of alveolar capillary endothelial cell and pulmonary parenchymal injury. The alveolar capillary permeability index is increased 1.8-fold after a 3-hour injury (0.30 to 0.54, p less than 0.05). Gravimetric analysis shows a similar 1.5-fold increase in wet lung weights at 3 hours (0.35% vs. 0.51% of total body weight, p less than 0.05). Histologic features assessed by quantitative morphometric analysis include significant intra-alveolar hemorrhage (0.57 +/- 0.08 vs. 0.12 +/- 0.02 RBC/alveolus at 6 hours, p less than 0.001); endothelial cell disruption (28.11% vs. 4.3%, p less than 0.001); and marked, early neutrophil infiltration (7.45 +/- 0.53 vs. 0.83 +/- 0.18 PMN/hpf at 3 hours, p less than 0.001). The cerulein peptide itself, a cholecystokinin (CCK) analog, is naturally occurring and is not toxic and in several in vitro settings including exposure to pulmonary artery endothelial cells, Type II epithelial cells, and an ex vivo perfused lung preparation. The occurrence of this ARDS-like acute lung injury with acute pancreatitis provides an excellent experimental model to investigate mechanisms and mediators involved in the pathogenesis of ARDS.

Full text

PDF
71

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Guice K. S., Miller D. E., Oldham K. T., Townsend C. M., Jr, Thompson J. C. Superoxide dismutase and catalase: a possible role in established pancreatitis. Am J Surg. 1986 Jan;151(1):163–169. doi: 10.1016/0002-9610(86)90027-9. [DOI] [PubMed] [Google Scholar]
  2. Guice K. S., Oldham K. T., Wolfe R. R., Simon R. H. Lung injury in acute pancreatitis: primary inhibition of pulmonary phospholipid synthesis. Am J Surg. 1987 Jan;153(1):54–61. doi: 10.1016/0002-9610(87)90201-7. [DOI] [PubMed] [Google Scholar]
  3. Imrie C. W., Ferguson J. C., Murphy D., Blumgart L. H. Arterial hypoxia in acute pancreatitis. Br J Surg. 1977 Mar;64(3):185–188. doi: 10.1002/bjs.1800640310. [DOI] [PubMed] [Google Scholar]
  4. Interiano B., Stuard I. D., Hyde R. W. Acute respiratory distress syndrome in pancreatitis. Ann Intern Med. 1972 Dec;77(6):923–926. doi: 10.7326/0003-4819-77-6-923. [DOI] [PubMed] [Google Scholar]
  5. Johnson K. J., Wilson B. S., Till G. O., Ward P. A. Acute lung injury in rat caused by immunoglobulin A immune complexes. J Clin Invest. 1984 Aug;74(2):358–369. doi: 10.1172/JCI111431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lampel M., Kern H. F. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977 Mar 11;373(2):97–117. doi: 10.1007/BF00432156. [DOI] [PubMed] [Google Scholar]
  7. Lankisch P. G., Rahlf G., Koop H. Pulmonary complications in fatal acute hemorrhagic pancreatitis. Dig Dis Sci. 1983 Feb;28(2):110–116. doi: 10.1007/BF01315139. [DOI] [PubMed] [Google Scholar]
  8. Malik A. B. Pulmonary edema after pancreatitis: role of humoral factors. Circ Shock. 1983;10(1):71–80. [PubMed] [Google Scholar]
  9. Morganroth M. L., Reeves J. T., Murphy R. C., Voelkel N. F. Leukotriene synthesis and receptor blockers block hypoxic pulmonary vasoconstriction. J Appl Physiol Respir Environ Exerc Physiol. 1984 May;56(5):1340–1346. doi: 10.1152/jappl.1984.56.5.1340. [DOI] [PubMed] [Google Scholar]
  10. Ranson J. H., Roses D. F., Fink S. D. Early respiratory insufficiency in acute pancreatitis. Ann Surg. 1973 Jul;178(1):75–79. doi: 10.1097/00000658-197307000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ranson J. H., Turner J. W., Roses D. F., Rifkind K. M., Spencer F. C. Respiratory complications in acute pancreatitis. Ann Surg. 1974 May;179(5):557–566. doi: 10.1097/00000658-197405000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reinitz E. R., Motoyama E., Smith G. J., Kerstein M. D. Pulmonary sequellae of experimental pancreatitis. J Surg Res. 1977 May;22(5):566–579. doi: 10.1016/0022-4804(77)90042-7. [DOI] [PubMed] [Google Scholar]
  13. Renner I. G., Savage W. T., 3rd, Pantoja J. L., Renner V. J. Death due to acute pancreatitis. A retrospective analysis of 405 autopsy cases. Dig Dis Sci. 1985 Oct;30(10):1005–1018. doi: 10.1007/BF01308298. [DOI] [PubMed] [Google Scholar]
  14. Steer M. L. Workshop on experimental pancreatitis. Dig Dis Sci. 1985 Jun;30(6):575–581. doi: 10.1007/BF01320266. [DOI] [PubMed] [Google Scholar]
  15. Tahamont M. V., Barie P. S., Blumenstock F. A., Hussain M. H., Malik A. B. Increased lung vascular permeability after pancreatitis and trypsin infusion. Am J Pathol. 1982 Oct;109(1):15–26. [PMC free article] [PubMed] [Google Scholar]
  16. Till G. O., Beauchamp C., Menapace D., Tourtellotte W., Jr, Kunkel R., Johnson K. J., Ward P. A. Oxygen radical dependent lung damage following thermal injury of rat skin. J Trauma. 1983 Apr;23(4):269–277. doi: 10.1097/00005373-198304000-00001. [DOI] [PubMed] [Google Scholar]
  17. Till G. O., Johnson K. J., Kunkel R., Ward P. A. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982 May;69(5):1126–1135. doi: 10.1172/JCI110548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Varani J., Fligiel S. E., Till G. O., Kunkel R. G., Ryan U. S., Ward P. A. Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Lab Invest. 1985 Dec;53(6):656–663. [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES