Skip to main content
British Medical Journal (Clinical Research Ed.) logoLink to British Medical Journal (Clinical Research Ed.)
. 1981 Mar 14;282(6267):847–849. doi: 10.1136/bmj.282.6267.847

Evidence for a circulating sodium transport inhibitor in essential hypertension.

L Poston, R B Sewell, S P Wilkinson, P J Richardson, R Williams, E M Clarkson, G A MacGregor, H E de Wardener
PMCID: PMC1504696  PMID: 6783199

Abstract

The active sodium transport of white cells and red cells obtained from patients with essential hypertension was impaired. Incubating white cells from normotensive subjects in serum obtained from patients with essential hypertension caused an impairment in sodium transport in the white cells of normotensive subjects similar to that found in the white cells of hypertensive patients. The impairment in sodium transport was due to a fall in the ouabain-sensitive component of the total sodium efflux rate constant. These results show that the serum of patients with essential hypertension contains a substance which influences sodium transport and that it has ouabain-like activity. They also suggest that it is this substance which causes the impairment in sodium transport in the leucocytes of patients with essential hypertension. These findings support the hypothesis that the rise in blood pressure in patients with essential hypertension is due to an increased concentration of a circulating sodium transport inhibitor which is continuously correcting a tendency for sodium retention by the kidney.

Full text

PDF
847

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderounmu A. F., Salako L. A. Abnormal cation composition and transport in erythrocytes from hypertensive patients. Eur J Clin Invest. 1979 Oct;9(5):369–375. doi: 10.1111/j.1365-2362.1979.tb00898.x. [DOI] [PubMed] [Google Scholar]
  2. Bianchi G., Fox U., Di Francesco G. F., Giovanetti A. M., Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974 Nov;47(5):435–448. doi: 10.1042/cs0470435. [DOI] [PubMed] [Google Scholar]
  3. Dahl L. K., Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res. 1975 Jun;36(6):692–696. doi: 10.1161/01.res.36.6.692. [DOI] [PubMed] [Google Scholar]
  4. Dahl L. K., Heine M., Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res. 1974 Jan;34(1):94–101. doi: 10.1161/01.res.40.4.94. [DOI] [PubMed] [Google Scholar]
  5. Dahl L. K., Knudsen K. D., Iwai J. Humoral transmission of hypertension: evidence from parabiosis. Circ Res. 1969 May;24(5 Suppl):21–33. [PubMed] [Google Scholar]
  6. Edmondson R. P., Thomas R. D., Hilton P. J., Patrick J., Jones N. F. Abnormal leucocyte composition and sodium transport in essential hypertension. Lancet. 1975 May 3;1(7914):1003–1005. doi: 10.1016/s0140-6736(75)91947-9. [DOI] [PubMed] [Google Scholar]
  7. GESSLER U. [Intracellular and extracellular electrolyte changes in essential hypertension before and after therapy. Studies on erythrocytes]. Z Kreislaufforsch. 1962 Feb;51:177–183. [PubMed] [Google Scholar]
  8. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garay R. P., Meyer P. A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients. Lancet. 1979 Feb 17;1(8112):349–353. doi: 10.1016/s0140-6736(79)92891-5. [DOI] [PubMed] [Google Scholar]
  10. Hilton P. J., Patrick J. Sodium and potassium flux rates in normal human leucocytes in an artificial extracellular fluid. Clin Sci. 1973 May;44(5):439–445. doi: 10.1042/cs0440439. [DOI] [PubMed] [Google Scholar]
  11. Jones R., Poston L., Hinestrosa H., Parsons V., Williams R. Weight gain between dialyses in diabetics: possible significance of raised intracellular sodium content. Br Med J. 1980 Jan 19;280(6208):153–153. doi: 10.1136/bmj.280.6208.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOSSE H., WEHMEYER H., WESSELS F. [The water- and electrolyte content of erythrocytes in arterial hypertension]. Klin Wochenschr. 1960 Apr 15;38:393–395. doi: 10.1007/BF01483466. [DOI] [PubMed] [Google Scholar]
  13. Postnov Y. V., Orlov S. N., Shevchenko A., Adler A. M. Altered sodium permeability, calcium binding and Na-K-ATPase activity in the red blood cell membrane in essential hypertension. Pflugers Arch. 1977 Nov 23;371(3):263–269. doi: 10.1007/BF00586267. [DOI] [PubMed] [Google Scholar]
  14. Schalekamp M. A., Lebel M., Beevers D. G., Fraser R., Kolsters G., Birkenhäger W. H. Body-fluid volume in low-renin hypertension. Lancet. 1974 Aug 10;2(7876):310–311. doi: 10.1016/s0140-6736(74)91691-2. [DOI] [PubMed] [Google Scholar]
  15. TOBIAN L., Jr, BINION J. T. Tissue cations and water in arterial hypertension. Circulation. 1952 May;5(5):754–758. doi: 10.1161/01.cir.5.5.754. [DOI] [PubMed] [Google Scholar]
  16. de Wardener H. E., MacGregor G. A. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 1980 Jul;18(1):1–9. doi: 10.1038/ki.1980.104. [DOI] [PubMed] [Google Scholar]

Articles from British Medical Journal (Clinical research ed.) are provided here courtesy of BMJ Publishing Group

RESOURCES