Skip to main content
British Medical Journal (Clinical Research Ed.) logoLink to British Medical Journal (Clinical Research Ed.)
. 1981 Oct 31;283(6300):1148–1150. doi: 10.1136/bmj.283.6300.1148

Prostacyclin and thromboxane in diabetes.

O Ylikorkala, J Kaila, L Viinikka
PMCID: PMC1507370  PMID: 6794795

Abstract

Concentrations of the stable antiaggregatory prostacyclin metabolite 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and of the proaggregatory thromboxane A2 metabolite thromboxane B2 were measured by radioimmunoassay in plasma from 53 diabetics. In 33 of these patients the ability of platelets to produce thromboxane B2 during spontaneous clotting was also studied. Plasma 6-keto-PGF1 alpha concentrations were higher (p less than 0.05) in the diabetics (mean 107.7 +/- SE 7.6 ng/l) than in non-diabetic controls matched for age and sex (87.5 +/- 4.7 ng/l), and diabetics with microangiography (n = 28) and higher (p less than 0.01) concentrations (124.3 +/- 10.8 ng/l) than those without microangiography (n = 25; 89.2 +/- 9.3 ng/l). Plasma thromboxane B2 concentrations were also higher (p less than 0.01) in the diabetics (mean 218.5 +/- SE 25.3 ng/l) than in the controls (127.7 +/- 9.8 ng/l), but this increase was not related to microangiography. The ability of platelets to generate thromboxane B2 did not differ between the diabetics (181.4 +/- 16.4 microgram/l) and controls (195.8 +/- 11.8 microgram/l). Platelets of diabetics with microangiopathy or taking oral hypoglycaemic agents (n = 19), however, produced decreased amounts of thromboxane B2 during clotting. Plasma concentrations of 6-keto-PGF1 alpha and thromboxane B2 were not related to concentrations of glucose, haemoglobin A1, high-density lipoprotein cholesterol, cholesterol, triglycerides, magnesium, or creatinine. These results suggest that in diabetics with microangiopathy a balance between prostacyclin and thromboxane A2 is shifted to dominance by prostacyclin.

Full text

PDF
1148

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bern M. M. Platelet functions in diabetes mellitus. Diabetes. 1978 Mar;27(3):342–350. doi: 10.2337/diab.27.3.342. [DOI] [PubMed] [Google Scholar]
  2. Butkus A., Skrinska V. A., Schumacher O. P. Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res. 1980 Jul 1;19(1-2):211–223. doi: 10.1016/0049-3848(80)90420-x. [DOI] [PubMed] [Google Scholar]
  3. Colwell J. A., Halushka P. V., Sarji K. E., Sagel J. Platelet function and diabetes mellitus. Med Clin North Am. 1978 Jul;62(4):753–766. doi: 10.1016/s0025-7125(16)31771-0. [DOI] [PubMed] [Google Scholar]
  4. Davis T. M., Bown E., Finch D. R., Mitchell M. D., Turner R. C. In-vitro venous prostacyclin production, plasma 6-keto-prostaglandin F1 alpha concentrations, and diabetic retinopathy. Br Med J (Clin Res Ed) 1981 Apr 18;282(6272):1259–1262. doi: 10.1136/bmj.282.6272.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dollery C. T., Friedman L. A., Hensby C. N., Kohner E., Lewis P. J., Porta M., Webster J. Circulating prostacyclin may be reduced in diabetes. Lancet. 1979 Dec 22;2(8156-8157):1365–1365. doi: 10.1016/s0140-6736(79)92844-7. [DOI] [PubMed] [Google Scholar]
  6. Eschwege E., Guyot-Argenton C., Aubry J. P., Tchobroutsky G. Effect of multiple daily insulin injections on the course of diabetic retinopathy. Diabetes. 1976 May;25(5):463–469. [PubMed] [Google Scholar]
  7. Ganda O. P. Pathogenesis of macrovascular disease in the human diabetic. Diabetes. 1980 Nov;29(11):931–942. doi: 10.2337/diab.29.11.931. [DOI] [PubMed] [Google Scholar]
  8. Halushka P. V., Rogers R. C., Loadholt C. B., Colwell J. A. Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med. 1981 Jan;97(1):87–96. [PubMed] [Google Scholar]
  9. Hamberg M., Svensson J., Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2994–2998. doi: 10.1073/pnas.72.8.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harrison H. E., Reece A. H., Johnson M. Decreased vascular prostacyclin in experimental diabetes. Life Sci. 1978 Jul 24;23(4):351–355. doi: 10.1016/0024-3205(78)90020-6. [DOI] [PubMed] [Google Scholar]
  11. Johnson M., Harrison H. E., Raftery A. T., Elder J. B. Vascular prostacyclin may be reduced in diabetes in man. Lancet. 1979 Feb 10;1(8111):325–326. doi: 10.1016/s0140-6736(79)90737-2. [DOI] [PubMed] [Google Scholar]
  12. Marcus A. J., Weksler B. B., Jaffe E. A., Broekman M. J. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J Clin Invest. 1980 Nov;66(5):979–986. doi: 10.1172/JCI109967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McNair P., Christiansen C., Madsbad S., Lauritzen E., Faber O., Binder C., Transbøl I. Hypomagnesemia, a risk factor in diabetic retinopathy. Diabetes. 1978 Nov;27(11):1075–1077. doi: 10.2337/diab.27.11.1075. [DOI] [PubMed] [Google Scholar]
  14. Moncada S., Gryglewski R., Bunting S., Vane J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976 Oct 21;263(5579):663–665. doi: 10.1038/263663a0. [DOI] [PubMed] [Google Scholar]
  15. Moncada S., Vane J. R. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med. 1979 May 17;300(20):1142–1147. doi: 10.1056/NEJM197905173002006. [DOI] [PubMed] [Google Scholar]
  16. Pace-Asciak C. R., Carrara M. C. Age-dependent increase in the formation of prostaglandin I2 by intact and homogenised aortae from the developing spontaneously hypertensive rat. Biochim Biophys Acta. 1979 Jul 27;574(1):177–181. doi: 10.1016/0005-2760(79)90097-3. [DOI] [PubMed] [Google Scholar]
  17. Silberbauer K., Clopath P., Sinzinger H., Schernthaner G. Effect of experimentally induced diabetes on swine vascular prostacyclin (PGI2) synthesis. Artery. 1980;8(1):30–36. [PubMed] [Google Scholar]
  18. Silberbauer K., Schernthaner G., Sinzinger H., Piza-Katzer H., Winter M. Decreased vascular prostacyclin in juvenile-onset diabetes. N Engl J Med. 1979 Feb 15;300(7):366–367. [PubMed] [Google Scholar]
  19. Viinikka L., Ylikorkala O. Measurement of thromboxane B2 in human plasma or serum by radioimmunoassay. Prostaglandins. 1980 Oct;20(4):759–766. doi: 10.1016/0090-6980(80)90114-8. [DOI] [PubMed] [Google Scholar]
  20. Weksler B. B., Ley C. W., Jaffe E. A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest. 1978 Nov;62(5):923–930. doi: 10.1172/JCI109220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Whittaker N., Bunting S., Salmon J., Moncada S., Vane J. R., Johnson R. A., Morton D. R., Kinner J. H., Gorman R. R., McGuire J. C. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins. 1976 Dec;12(6):915–928. doi: 10.1016/0090-6980(76)90126-x. [DOI] [PubMed] [Google Scholar]
  22. Ziboh V. A., Maruta H., Lord J., Cagle W. D., Lucky W. Increased biosynthesis of thromboxane A2 by diabetic platelets. Eur J Clin Invest. 1979 Jun;9(3):223–228. doi: 10.1111/j.1365-2362.1979.tb00927.x. [DOI] [PubMed] [Google Scholar]

Articles from British Medical Journal (Clinical research ed.) are provided here courtesy of BMJ Publishing Group

RESOURCES