Skip to main content
American Journal of Public Health logoLink to American Journal of Public Health
. 1998 Mar;88(3):406–412. doi: 10.2105/ajph.88.3.406

Correcting for bias in relative risk estimates due to exposure measurement error: a case study of occupational exposure to antineoplastics in pharmacists.

D Spiegelman 1, B Valanis 1
PMCID: PMC1508329  PMID: 9518972

Abstract

OBJECTIVES: This paper describes 2 statistical methods designed to correct for bias from exposure measurement error in point and interval estimates of relative risk. METHODS: The first method takes the usual point and interval estimates of the log relative risk obtained from logistic regression and corrects them for nondifferential measurement error using an exposure measurement error model estimated from validation data. The second, likelihood-based method fits an arbitrary measurement error model suitable for the data at hand and then derives the model for the outcome of interest. RESULTS: Data from Valanis and colleagues' study of the health effects of antineoplastics exposure among hospital pharmacists were used to estimate the prevalence ratio of fever in the previous 3 months from this exposure. For an interdecile increase in weekly number of drugs mixed, the prevalence ratio, adjusted for confounding, changed from 1.06 to 1.17 (95% confidence interval [CI] = 1.04, 1.26) after correction for exposure measurement error. CONCLUSIONS: Exposure measurement error is often an important source of bias in public health research. Methods are available to correct such biases.

Full text

PDF
406

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong B. G. The effects of measurement errors on relative risk regressions. Am J Epidemiol. 1990 Dec;132(6):1176–1184. doi: 10.1093/oxfordjournals.aje.a115761. [DOI] [PubMed] [Google Scholar]
  2. Armstrong B. G., Whittemore A. S., Howe G. R. Analysis of case-control data with covariate measurement error: application to diet and colon cancer. Stat Med. 1989 Sep;8(9):1151–1166. doi: 10.1002/sim.4780080916. [DOI] [PubMed] [Google Scholar]
  3. Chen T. T. A review of methods for misclassified categorical data in epidemiology. Stat Med. 1989 Sep;8(9):1095–1108. doi: 10.1002/sim.4780080908. [DOI] [PubMed] [Google Scholar]
  4. DIAMOND E. L., LILIENFELD A. M. Effects of errors in classification and diagnosis in various types of epidemiological-studies. Am J Public Health Nations Health. 1962 Jul;52:1137–1144. doi: 10.2105/ajph.52.7.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dosemeci M., Wacholder S., Lubin J. H. Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am J Epidemiol. 1990 Oct;132(4):746–748. doi: 10.1093/oxfordjournals.aje.a115716. [DOI] [PubMed] [Google Scholar]
  6. Flegal K. M., Keyl P. M., Nieto F. J. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol. 1991 Nov 15;134(10):1233–1244. doi: 10.1093/oxfordjournals.aje.a116026. [DOI] [PubMed] [Google Scholar]
  7. Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987 May;125(5):761–768. doi: 10.1093/oxfordjournals.aje.a114593. [DOI] [PubMed] [Google Scholar]
  8. Greenland S. Statistical uncertainty due to misclassification: implications for validation substudies. J Clin Epidemiol. 1988;41(12):1167–1174. doi: 10.1016/0895-4356(88)90020-0. [DOI] [PubMed] [Google Scholar]
  9. Labuhn K. T., Valanis B. G., Glass A. G., Vollmer W. M. Implementing a cancer-control study in a National Cancer Institute clinical trials network. Cancer Pract. 1994 Jan-Feb;2(1):47–54. [PubMed] [Google Scholar]
  10. Prentice R. L., Sheppard L. Dietary fat and cancer: consistency of the epidemiologic data, and disease prevention that may follow from a practical reduction in fat consumption. Cancer Causes Control. 1990 Jul;1(1):81–109. doi: 10.1007/BF00053187. [DOI] [PubMed] [Google Scholar]
  11. Rimm E. B., Ascherio A., Giovannucci E., Spiegelman D., Stampfer M. J., Willett W. C. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA. 1996 Feb 14;275(6):447–451. doi: 10.1001/jama.1996.03530300031036. [DOI] [PubMed] [Google Scholar]
  12. Rosner B., Spiegelman D., Willett W. C. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. Am J Epidemiol. 1990 Oct;132(4):734–745. doi: 10.1093/oxfordjournals.aje.a115715. [DOI] [PubMed] [Google Scholar]
  13. Rosner B., Spiegelman D., Willett W. C. Correction of logistic regression relative risk estimates and confidence intervals for random within-person measurement error. Am J Epidemiol. 1992 Dec 1;136(11):1400–1413. doi: 10.1093/oxfordjournals.aje.a116453. [DOI] [PubMed] [Google Scholar]
  14. Rosner B., Willett W. C., Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med. 1989 Sep;8(9):1051–1073. doi: 10.1002/sim.4780080905. [DOI] [PubMed] [Google Scholar]
  15. Savitz D. A., Pearce N. E., Poole C. Methodological issues in the epidemiology of electromagnetic fields and cancer. Epidemiol Rev. 1989;11:59–78. doi: 10.1093/oxfordjournals.epirev.a036045. [DOI] [PubMed] [Google Scholar]
  16. Spiegelman D., Casella M. Fully parametric and semi-parametric regression models for common events with covariate measurement error in main study/validation study designs. Biometrics. 1997 Jun;53(2):395–409. [PubMed] [Google Scholar]
  17. Spiegelman D., Gray R. Cost-efficient study designs for binary response data with Gaussian covariate measurement error. Biometrics. 1991 Sep;47(3):851–869. [PubMed] [Google Scholar]
  18. Spiegelman D., Schneeweiss S., McDermott A. Measurement error correction for logistic regression models with an "alloyed gold standard". Am J Epidemiol. 1997 Jan 15;145(2):184–196. doi: 10.1093/oxfordjournals.aje.a009089. [DOI] [PubMed] [Google Scholar]
  19. Thomas D., Stram D., Dwyer J. Exposure measurement error: influence on exposure-disease. Relationships and methods of correction. Annu Rev Public Health. 1993;14:69–93. doi: 10.1146/annurev.pu.14.050193.000441. [DOI] [PubMed] [Google Scholar]
  20. Valanis B. G., Hertzberg V., Shortridge L. Antineoplastic drugs. Handle with care. AAOHN J. 1987 Nov;35(11):487–492. [PubMed] [Google Scholar]
  21. Valanis B. G., Vollmer W. M., Labuhn K. T., Glass A. G. Association of antineoplastic drug handling with acute adverse effects in pharmacy personnel. Am J Hosp Pharm. 1993 Mar;50(3):455–462. [PubMed] [Google Scholar]
  22. Wacholder S., Armstrong B., Hartge P. Validation studies using an alloyed gold standard. Am J Epidemiol. 1993 Jun 1;137(11):1251–1258. doi: 10.1093/oxfordjournals.aje.a116627. [DOI] [PubMed] [Google Scholar]
  23. Wacholder S., Dosemeci M., Lubin J. H. Blind assignment of exposure does not always prevent differential misclassification. Am J Epidemiol. 1991 Aug 15;134(4):433–437. doi: 10.1093/oxfordjournals.aje.a116105. [DOI] [PubMed] [Google Scholar]
  24. Willett W. C., Hunter D. J., Stampfer M. J., Colditz G., Manson J. E., Spiegelman D., Rosner B., Hennekens C. H., Speizer F. E. Dietary fat and fiber in relation to risk of breast cancer. An 8-year follow-up. JAMA. 1992 Oct 21;268(15):2037–2044. [PubMed] [Google Scholar]

Articles from American Journal of Public Health are provided here courtesy of American Public Health Association

RESOURCES