Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Feb;114(3):678–688. doi: 10.1111/j.1476-5381.1995.tb17192.x

The relationship between density of alpha-adrenoceptor binding sites and contractile responses in several porcine isolated blood vessels.

I K Wright 1, N A Blaylock 1, D A Kendall 1, V G Wilson 1
PMCID: PMC1510029  PMID: 7735695

Abstract

1. The aim of this study was to investigate constrictor alpha-adrenoceptors in three isolated blood vessels of the pig, the thoracic aorta (TA), the splenic artery (SA) and marginal ear vein (MEV) and then compare the functional response with the densities of alpha 1- and alpha 2-adrenoceptor binding sites in these and several other porcine vascular tissues, palmar common digital artery (PCDA), palmar lateral vein (PLV) and ear artery (EA). 2. Noradrenaline (NA), phenylephrine (PE) and UK14304 (all at 0.03-10 microM) elicited concentration-dependent contractions in the TA and MEV, with a rank order of potency of UK14304 > NA > PE. UK14304 produced maximal responses which were 58% (TA) and 65% (MEV) of that of NA. In the SA, UK14304 and PE produced maximal responses which were less than 10% and 50% of the NA-induced maximal response respectively, with an order of potency of NA > PE. In the SA, NA-induced contractions were competitively antagonized by prazosin (pA2 = 8.60 +/- 0.15). Further, rauwolscine (1-10 microM) antagonized NA-induced contractions with an apparent pKB of 6.09 +/- 0.11 (n = 6), indicating an action at alpha 1-adrenoceptors. The combination of the two antagonists at concentrations selective for alpha 1- (0.1 microM) and alpha 2-adrenoceptors (1 microM) had no greater effect than either antagonist alone. This suggests that the SA expresses only post-junctional alpha 1-adrenoceptors. 3. In the TA, prazosin produced non-parallel shifts in the NA-induced CRC and this was also observed with rauwolscine, where reductions in the maximal responses were also observed. In the MEV, prazosin was largely inactive in antagonizing NA-induced contractions. In both these vessels a combination of these two antagonists had a greater effect than either alone, indicating the presence of functional alpha 1- and alpha 2-adrenoceptors. The post-junctional alpha 2-adrenoceptors in all of these vessels were resistant to prazosin, suggesting the alpha 2-adrenoceptor to be of the alpha 2A/2D subtype. The expression of functional alpha 2-adrenoceptors was MEV > TA > PLV > PCDA > SA. 4. In radioligand binding studies using TA P2 pellet membranes, [3H]-prazosin and [3H]-RX821002 ([1,4-[6,7(n)-3H] benzodioxan-2-methoxy-2-yl)-2-imidazole) labelled different high affinity sites, and in competition studies using identical membranes corynanthine displaced [3H]-prazosin with 10 fold higher affinity than rauwolscine, indicating that [3H]-prazosin was selectively binding to alpha 1-adrenoceptor sites.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
678

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angus J. A., Broughton A., Mulvany M. J. Role of alpha-adrenoceptors in constrictor responses of rat, guinea-pig and rabbit small arteries to neural activation. J Physiol. 1988 Sep;403:495–510. doi: 10.1113/jphysiol.1988.sp017260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bockman C. S., Jeffries W. B., Abel P. W. Binding and functional characterization of alpha-2 adrenergic receptor subtypes on pig vascular endothelium. J Pharmacol Exp Ther. 1993 Dec;267(3):1126–1133. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  6. Daly C. J., McGrath J. C., Wilson V. G. An examination of the postjunctional alpha-adrenoceptor subtypes for (-)-noradrenaline in several isolated blood vessels from the rabbit. Br J Pharmacol. 1988 Oct;95(2):473–484. doi: 10.1111/j.1476-5381.1988.tb11668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  8. Dunn W. R., McGrath J. C., Wilson V. G. Postjunctional alpha-adrenoceptors in the rabbit isolated distal saphenous artery: indirect sensitivity to prazosin of responses to noradrenaline mediated via postjunctional alpha 2-adrenoceptors. Br J Pharmacol. 1991 Jun;103(2):1484–1492. doi: 10.1111/j.1476-5381.1991.tb09815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flavahan N. A., Vanhoutte P. M. Effect of cooling on alpha-1 and alpha-2 adrenergic responses in canine saphenous and femoral veins. J Pharmacol Exp Ther. 1986 Jul;238(1):139–147. [PubMed] [Google Scholar]
  10. Fredholm B. B., Jansen I., Edvinsson L. Neuropeptide Y is a potent inhibitor of cyclic AMP accumulation in feline cerebral blood vessels. Acta Physiol Scand. 1985 Jul;124(3):467–469. doi: 10.1111/j.1748-1716.1985.tb07683.x. [DOI] [PubMed] [Google Scholar]
  11. Lot T. Y., Wilson V. G. Overnight storage of the porcine isolated splenic artery enhances endothelium-dependent contractions to NG-nitro-L-arginine methyl ester without impairing endothelium-dependent dilator function. Naunyn Schmiedebergs Arch Pharmacol. 1994 Jan;349(1):95–100. doi: 10.1007/BF00178212. [DOI] [PubMed] [Google Scholar]
  12. Mahan L. C., McKernan R. M., Insel P. A. Metabolism of alpha- and beta-adrenergic receptors in vitro and in vivo. Annu Rev Pharmacol Toxicol. 1987;27:215–235. doi: 10.1146/annurev.pa.27.040187.001243. [DOI] [PubMed] [Google Scholar]
  13. Matlib M. A., Crankshaw J., Garfield R. E., Crankshaw D. J., Kwan C. Y., Branda L. Q., Daniel E. E. Characterization of membrane fractions and isolation of purified plasma membranes from rat myometrium. J Biol Chem. 1979 Mar 25;254(6):1834–1840. [PubMed] [Google Scholar]
  14. McGrath J. C., Brown C. M., Wilson V. G. Alpha-adrenoceptors: a critical review. Med Res Rev. 1989 Oct-Dec;9(4):407–533. doi: 10.1002/med.2610090403. [DOI] [PubMed] [Google Scholar]
  15. Nielsen H., Pilegaard H. K., Hasenkam J. M., Mortensen F. V., Mulvany M. J. Heterogeneity of postjunctional alpha-adrenoceptors in isolated mesenteric resistance arteries from rats, rabbits, pigs, and humans. J Cardiovasc Pharmacol. 1991 Jul;18(1):4–10. doi: 10.1097/00005344-199107000-00002. [DOI] [PubMed] [Google Scholar]
  16. Nielsen H., Thom S. M., Hughes A. D., Martin G. N., Mulvany M. J., Sever P. S. Postjunctional alpha 2-adrenoceptors mediate vasoconstriction in human subcutaneous resistance vessels. Br J Pharmacol. 1989 Jul;97(3):829–834. doi: 10.1111/j.1476-5381.1989.tb12022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishimura J., Kanaide H., Nakamura M. Characteristics of adrenoceptors and [3H]nitrendipine receptors of porcine vascular smooth muscle: differences between coronary artery and aorta. Circ Res. 1987 Jun;60(6):837–844. doi: 10.1161/01.res.60.6.837. [DOI] [PubMed] [Google Scholar]
  18. Ohyanagi M., Faber J. E., Nishigaki K. Differential activation of alpha 1- and alpha 2-adrenoceptors on microvascular smooth muscle during sympathetic nerve stimulation. Circ Res. 1991 Jan;68(1):232–244. doi: 10.1161/01.res.68.1.232. [DOI] [PubMed] [Google Scholar]
  19. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parkinson N. A., Thom S. M., Hughes A. D., Sever P. S., Mulvany M. J., Nielsen H. Neurally evoked responses of human isolated resistance arteries are mediated by both alpha 1- and alpha 2-adrenoceptors. Br J Pharmacol. 1992 Jul;106(3):568–573. doi: 10.1111/j.1476-5381.1992.tb14376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shi A. G., Kwan C. Y., Daniel E. E. Relation between density (maximum binding) of alpha adrenoceptor binding sites and contractile response in four canine vascular tissues. J Pharmacol Exp Ther. 1989 Sep;250(3):1119–1124. [PubMed] [Google Scholar]
  22. Stevens M. J., Moulds R. F. Neuronally released norepinephrine does not preferentially activate postjunctional alpha 1-adrenoceptors in human blood vessels in vitro. Circ Res. 1985 Sep;57(3):399–405. doi: 10.1161/01.res.57.3.399. [DOI] [PubMed] [Google Scholar]
  23. Templeton A. G., Macmillan J., McGrath J. C., Storey N. D., Wilson V. G. Evidence for prazosin-resistant, rauwolscine-sensitive alpha-adrenoceptors mediating contractions in the isolated vascular bed of the rat tail. Br J Pharmacol. 1989 Jun;97(2):563–571. doi: 10.1111/j.1476-5381.1989.tb11986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson V. G., Brown C. M., McGrath J. C. Are there more than two types of alpha-adrenoceptors involved in physiological responses? Exp Physiol. 1991 May;76(3):317–346. doi: 10.1113/expphysiol.1991.sp003501. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES